

Cevian Triangle \& Circle

- Pick P in the interior of $\triangle A B C$
- Draw cevians from each vertex through P to the opposite side
- Gives set of three intersecting cevians $A A^{\prime}, B B^{\prime}$, and $C C^{\prime}$ with respect to that point.
- The triangle $\triangle A^{\prime} B^{\prime} C^{\prime}$ is known as the cevian triangle of $\triangle A B C$ with respect to P
- Circumcircle of $\triangle A^{\prime} B^{\prime} C^{\prime}$ is known as the evian circle with respect to P.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Cevians

\qquad
In $\triangle A B C$ examples of cevians are: \qquad
perpendicular bisectors - cevian point $=0$ angle bisectors - cevian point = I (incenter)
\qquad altitudes - cevian point $=\mathrm{H}$

Ceva's Theorem deals with concurrence of any set of cevians.
\qquad

Gergonne Point
In $\triangle A B C$ find the incircle and points of tangency of incircle with sides of $\triangle A B C$. Known as contact triangle \qquad

Gergonne Point

These cevians are concurrent! Why?
Recall that $A E=A F, B D=B F$, and $C D=C E$

Gergonne Point

\qquad
The point is called the Gergonne point, Ge.
\qquad
\qquad
\qquad
\qquad
\qquad

05-Oct-2011

Gergonne Point

Draw lines parallel to sides of contact triangle through Ge . \qquad
\qquad

05-Oct-2011
MA 341001 9

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

Isogonal Conjugates

Two lines $A B$ and $A C$ through vertex A are said to be isogonal if one is the reflection \qquad of the other through the angle bisector.

Isogonal Conjugates

If lines through A, B, and C are concurrent at P, then the isogonal lines are concurrent at Q.

Points P and Q are isogonal conjugates.

Symmedians

In $\triangle A B C$, the symmedian $A S_{a}$ is a cevian through vertex $A\left(S_{a} \in B C\right)$ isogonally conjugate to the median $A M_{a}, M_{a}$ being the midpoint of $B C$.
The other two symmedians BS_{b} and $C S_{c}$ are defined similarly.

05-Oct-2011

Symmedians

The three symmedians $A S_{a}, B S_{b}$ and $C S_{c}$ concur in a point commonly denoted K and variably known as either

- the symmedian point or
- the Lemoine point

05-Oct-2011

MA 341001
\qquad

Symmedian of Right Triangle

The symmedian point K of a right triangle is the midpoint of the altitude to the hypotenuse

Proportions of the Symmedian

\qquad

Draw the cevian from vertex A, through the symmedian point, to the opposite side of the triangle, meeting $B C$ at S_{a}. Then

Length of the Symmedian

Draw the cevian from vertex C, through \qquad the symmedian point, to the opposite side of the triangle. Then this segment has \qquad length

$$
C S_{c}=\frac{a b \sqrt{2 a^{2}+2 b^{2}-c^{2}}}{a^{2}+b^{2}}
$$

Likewise

$$
\begin{aligned}
& A S_{a}=\frac{b c \sqrt{2 b^{2}+2 c^{2}-a^{2}}}{b^{2}+c^{2}} \\
& B S_{b}=\frac{a c \sqrt{2 a^{2}+2 c^{2}-b^{2}}}{a_{\text {M } 34100 ~} a^{2}+c^{2}}
\end{aligned}
$$

Excircles

\qquad
In several versions of geometry triangles \qquad are defined in terms of lines not segments.

\qquad
\qquad
\qquad

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

\qquad

Find intersection \qquad
\qquad
\qquad
\qquad
\qquad
\qquad

05-Oct-2011 \qquad

\qquad

\qquad

Construct-circle centered at I_{c} \qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

Excircles

The $I_{a} I_{b}$, and I_{c} are called excenters. r_{a}, r_{b}, r_{c} are called exradii

\qquad
\qquad
\qquad

Exradii

Likewise

$$
\begin{aligned}
& r_{a}=\sqrt{\frac{s(s-b)(s-c)}{s-a}} \\
& r_{b}=\sqrt{\frac{s(s-a)(s-c)}{s-b}} \\
& r_{c}=\sqrt{\frac{s(s-a)(s-b)}{s-c}}
\end{aligned}
$$

MA 341001

Excircles

Theorem: For any triangle $\triangle A B C$
 $\frac{1}{r}=\frac{1}{r_{a}}+\frac{1}{r_{b}}+\frac{1}{r_{c}}$

05-Oct-2011
MA 341001

\qquad

Nagel Point

In $\triangle A B C$ find the excircles and points of tangency of the excircles with sides of $\triangle A B C$.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Mittenpunkt Point

The mittenpunkt of $\triangle A B C$ is the point of intersection of the lines from the \qquad excenters through midpoints of corresponding sides \qquad
\qquad
\qquad
\qquad

05-Oct-2011

Spieker Point

The Spieker center is center of Spieker circle, i.e., the incenter of the medial \qquad triangle of the original triangle.

\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

