Pedal Triangles and the Simson Line

MA 341 - Topics in Geometry Lecture 18

Miquel's Theorem

If P, Q, and R are on BC, AC, and AB respectively, then the three circles determined by a vertex and the two points on the adjacent sides meet at a point called the Miquel point. C

10-Oct-2011

Miquel's Theorem

Let $\triangle ABC$ be our triangle and let P,Q, and R be the points on the sides of the triangle. Construct the circles of the theorem. Consider two of the circles, C_1 and C_2 , that pass through P. They intersect at P, so they must intersect at a second point, call it G.

In circle C_2 $\angle QGP + \angle QAP = 180$ In circle C_1 $\angle RGP + \angle RBP = 180$

Miquel's Theorem

$$\angle QGP + \angle QGR + \angle RGP = 360$$

$$(180 - \angle A) + \angle QGR + (180 - \angle B) = 360$$

$$\angle QGR = \angle A + \angle B$$

$$= 180 - \angle C$$

Thus, $\angle QGR$ and $\angle C$ are supplementary and so Q, G, R, and C are concyclic. These circle then intersect in one point.

For any triangle $\triangle ABC$ and any point P, let A', B', C' be the feet of the perpendiculars from P to the (extended) sides of $\triangle ABC$.

Form the triangle $\triangle A'B'C'$.

Do we always get a triangle?

Form the triangle $\triangle A'B'C'$.

What is it with P?

Can we characterize the points where the pedal triangle is a "degenerate triangle"?

Simson-Wallace Line

Theorem (Wallace, Simson): Given a reference triangle $\triangle ABC$, if P lies on the circumcircle of $\triangle ABC$ then the pedal triangle is degenerate.

Proof: Assume that P is on circumcircle of $\triangle ABC$

Proof: First, assume that P is on the circumcircle.

WLOG we can assume that P is on arc AC that does not contain B and P is at least as far from C as it is from A. If necessary you can relabel the points to make this so.

P also lies on the circumcircle of triangle $\Delta B'BA'$. Why?

 $\angle PB'B = 90 = \angle PA'B$.

⇒ PA'BB' cyclic -quadrilateral since
opposite angles add
up to 180.

$$\angle APC + \angle B = 180$$

and
 $\angle A'PB' + \angle B = 180$
So
 $\angle APC = \angle A'PB'$

 $\angle APC - \angle APB' = \angle A'PB' - \angle APB'$ $\angle B'PC = \angle A'PA$.

Now, B', C, P and C' are concyclic so by Star Trek Lemma

 $\angle B'PC = \angle B'C'C$.

Similarly,

 $\angle A'PA = \angle A'C'A.$

making A', B', C' collinear.

The converse of this theorem is also true. That is if $\Delta A'B'C'$ is degenerate then P must lie on the circumcircle of ΔABC .

Lemma 1

Choose P on the circumcircle of $\triangle ABC$. Let Q be the intersection of the

perpendicular to BC through P with the

circumcircle ($Q \neq P$).

Let X be foot of P in BC.

Let Z be foot of P in AB.

If $Q \neq A$, then ZX || QA.

Proof

Assume $X \neq Z$. If P=B, then P=B=X=Z, so $P \neq B$. So, consider the unique circle with diameter PB.

$$\angle PXB = 90 = \angle PZB$$

 \Rightarrow X,Z are concyclic with P & B.

$$\Rightarrow \angle PXZ = \angle PBZ$$

$$\Rightarrow$$
XZ||QA

10-Oct-2011

MA 341

Lemma 2

If the altitude AD of $\triangle ABC$ meets the circumcircle at P, then the Simson line of P is parallel to the line tangent to the circle at A.

Proof

XYZ is the Simson line of P.

 \Rightarrow P,Z,B,X concyclic

$$\angle BXZ = \angle BPZ$$

$$\angle BPZ = \frac{1}{2}AB$$

$$\frac{1}{2}AB = \angle \Omega AB$$

$$\angle \Omega AB = \angle AXZ$$

$$\Rightarrow \Omega A || XY$$

Lemma 3

From P on the circumcircle of $\triangle ABC$ if perpendiculars PX, PY, PZ are drawn to AC, AB, and AC, then (PA)(PZ)=(PB)(PX).

Proof

 $\angle PYB=90$ and $\angle PZB=90$ P

Thus, P,Y,Z,B concyclic,

Thus, ∠PBY=∠PZY

Likewise P,X,A,Y concyclic

Thus, \(\textsty PXY = \textsty PAY \)

ΔPAB~ΔPXZ

(PA)(PZ)=(PB)(PX)

P is called the pole of the line A'B'.

Lemma 4

Let P and Q be points on the circumcircle of ABC. The angle between the Simson lines having P and Q as poles is half of the

arc, PQ.

10-Oct-2011

24

Proof

Proof: Extend Pyp to R and QyQ to S.

AS
$$|| X_Q Y_Q \text{ and } AR || X_P Y_P$$

$$\Rightarrow \angle Y_P \Omega Y_Q = \angle RAS = \frac{1}{2} \widehat{RS}$$

Since PR/QS, PQ = RS

10-Oct-2011

Lemma 5

Two Simson lines are perpendicular iff their poles are on opposite ends of a diameter.

Find the orthocenter of $\triangle ABC$ and construct HP.

HP intersects the Simson line.

Lemma 6

The point of intersection is the midpoint of HP.

Proof

Construct AF.

Extend to E.

Mark H on AF.

Construct PH.

Proof

Construct PZ_BC. Extend to Q.

Construct AQ.

YZ||AQ by Lemma 1

Construct PE.
Intersects BC at D
Construct HD
Extend to meet
PQ at R

Consider APHR.

HF=FE (proven earlier) P

DF=perpendicular

bisector of HE.

⇒DH=DE

∠PQA= ∠PEA

= \(\text{RHE} \)

= \(\text{PRH} \)

Thus, $\Delta PZD = \Delta RZD$ \Rightarrow PZ=ZR \Rightarrow Z=midpoint PR M ⇒ M=midpoint of PH Note: M lies on ninepoint circle