
10/21/2011

1

Quadrilaterals

MA 341 – Topics in Geometry
Lecture 21

Ptolemy’s Theorem
Let a, b, c, and d be the 
lengths of consecutive 
sides of a cyclic 
quadrilateral and let x 
and y be the lengths of 
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and y be the lengths of 
the diagonals. Then

ac + bd = xy. d

Ptolemy’s Theorem
We have: ∆ABP ~ ∆CDP & 
∆BCP ~ ∆DAP.
So
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as = uc, br = ud, and uv = rs.
sa2 + rb2 = uac+ubd = u(ac+bd)
xu2+xrs = xu2+xuv=xu(u+v)=uxy
By Stewart’s Theorem
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The Converse of Ptolemy’s 
Theorem

Let a, b, c, and d be the lengths of consecutive 
sides of a quadrilateral and let x and y be the 
lengths of the diagonals. If

  bd  

17-Oct-2011 MA 341 001 4

ac + bd = xy,
then the quadrilateral is a cyclic quadrilateral.

Euler’s Theorem
Let a, b, c, and d be the 
lengths of consecutive 
sides of a quadrilateral, 
m and n lengths of 
diagonals  and x the 
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diagonals, and x the 
distance between 
midpoints of diagonals. 
Then d

a2 + b2 + c2 + d2 = m2 + n2 + 4x2

q

Brahmagupta’s Theorem
There is an analog of 
Heron’s Formula for 
special quadrilaterals.

Let a, b, c, and d be 
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Let a, b, c, and d be 
lengths of consecutive 
sides of cyclic 
quadrilateral, then
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Area of a Quadrilateral
c

b

d

Using triangle trigonometry
you can show that
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Maltitudes
For a quadrilateral the maltitude
(midpoint altitude) is a perpendicular 
through the midpoint of one side 
perpendicular to the opposite side.
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Maltitudes
Rectangle

Square – sameSquare same

Parallelogram
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Maltitudes
Rhombus

KiteKite
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Maltitudes
Trapezoid

Isosceles trapezoid
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Maltitudes
Cyclic quadrilaterals
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Quadrilaterals and Circles

• For a cyclic quadrilateral, area is easy 
and there are nice relationships

• Maybe maltitudes of cyclic quadrilateral 
are concurrentare concurrent

• Can we tell when a quadrilateral is 
cyclic?

• Can we tell when a quadrilateral has an 
inscribed circle?
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Theorem

For a cyclic quadrilateral the maltitudes
intersect in a single point, called the anti-
center.
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Proof

Let O = center of circle
G = centroid, 

intersection of midlines

Let T = point on ray 
OG so that OG = GT
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Proof
PG = RG
OG = GT
PGT = RG0
∆PGT = ∆RG0 

PTG = ROG

PT || OR
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Proof

OR  CD
Thus, PT  CD
T lies on maltitude
th h Pthrough P

Use ∆RGT = ∆PG0
to show T lies on 
maltitude through R 
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Proof

Using other midline we show T lies on 
maltitudes through Q and S.
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Anticenter
T = anticenter = 
intersection of 
maltitudes
G = midpoint
O = circumcenter

OG = GT
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Other Anticenter Properties
Perpendiculars from 
midpoint of one 
diagonal to other 
intersect at T.
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Other Anticenter Properties
Construct 9-point 
circles of the four 
triangles ∆ABD,
∆BCD, 
∆ABC, and 
∆ADC.
The 4 circles 
intersect at the 
anticenter.
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Other Anticenter Properties
The centers of the 
9-point circles are 
concyclic with 
center T.
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