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1.3 Curvature and Plane Curves

We want to be able to associate to a curve a function that measures how much the curve
bends at each point.

Let α : (a, b)→ R2 be a curve parameterized by arclength. Now, in the Euclidean plane
any three non-collinear points lie on a unique circle, centered at the orthocenter of the
triangle defined by the three points.

For s ∈ (a, b) choose s1, s2, and s3 near s so that α(s1), α(s2), and α(s3) are non-
collinear. This is possible as long as α is not linear near α(s). Let C = C(s1, s2, s3)
be the center of the circle through α(s1), α(s2), and α(s3). The radius of this circle is
approximately |α(s)− C|. A better function to consider is the square of the radius:

ρ(s) = (α(s)− C) · (α(s)− C).

Since α is smooth, so is ρ. Now, α(s1), α(s2), and α(s3) lie on the circle so ρ(s1) =
ρ(s2) = ρ(s3). By Rolle’s Theorem there are points t1 ∈ (s1, s2) and t2 ∈ (s2, s3) so that
ρ′(t1) = ρ′(t2) = 0. Then, using Rolle’s Theorem again on these points, there is a point
u ∈ (t1, t2) so that ρ′′(u) = 0. Using Leibnitz’ Rule we have ρ′(s) = 2α′(s) · (α(s)−C) and

ρ′′(s) = 2[α′′(s) · (α(s)− C) + α′(s) · α′(s)].

Since ρ′′(u) = 0, we get

α′′(u) · (α(u)− C) = −α′(s) · α(s) = −1.

Now, as s1, s2, and s3 get closer to s, then the center of the circles will converge to a
value Cα(s). Then t1 and t2 go to s, so ρ′(s) = 0 which forces α′(s) · (α(s) − Cα(s)) = 0.
Furthermore, α′′(s) · (α(s)− Cα(s)) = −1.

This says that the circle centered at Cα(s) with radius α(s) − Cα(s) shares the point
α(s) with the curve α. Furthermore, from the above the tangent to the circle at α(s) is a
multiple of α′(s). Thus, this circle, called the osculating circle, is tangent to the curve at
α(s). The point Cα(s) is called the center of curvature of α at s, and the curve given by
the function Cα(s) is called the curve of centers of curvature.

Definition 1.5 The (unsigned) plane curvature of α at s is the reciprocal of the radius
of the osculating circle:

κ±(s) =
1

|α(s)− Cαs
|.

Theorem 1.4 κ±(s) = |α′′(s)|.

Proof: Since α′(s) · α′(s) = 1, differentiating gives α′(s) · α′′(s) = 0. This means that
α′′(s) is perpendicular to α′(s). Since we have seen that α(s)−Cα(s) is also perpendicular
to α′(s), there exists a k ∈ R so that

α(s)− Cα(s) = kα′′(s).
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Figure 1.1: Tractrix curve

From above we have

−1 = α′′(s) · (α(s)− Cα(s))
= α′′(s) · kα′′(s)
= k|α′′(s)|2.

Thus,

|α(s)− Cα(s)| = |k| |α′′(s)| = 1
|α′′(s)|2

|α′′(s)| = 1
|α′′(s)|

.

We rarely can symbolically represent a curve as parameterized by arclength. Quite
often, a different parameterization is more reasonable. To find the curvature, though,
would require that we parameterize by arclength and then differentiate. There is an easier
way.

Theorem 1.5 The plane curvature of a regular plane curve σ(t) = (x(t), y(t)) is given by

κ±(t) =
∣∣∣∣ x′′y′ − y′′x′

((x′)2 + (y′)2)3/2

∣∣∣∣ .
1.3.1 Tractrix

Describe the curve followed by a weight being dragged on the end of a fixed straight length
and the other end moves along a fixed straight line. The tractrix is the curve characterized
by the condition that the length of the segment of the tangent line to the curve from the
curve to the y-axis is constant. It has the following equation for a given constant a:

x = a ln(
a+

√
a2 − y2

y
)−

√
a2 − y2.

and has graph shown in Figure 1.1.
Let the curve begin at (a, 0) on the x-axis. Now, we can see that

y′

x′
=
dy

dx
=
√
a2 − x2

x
. (1.1)
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Square both sides of the equation and simplify

(x′)2 + (y′)2 =
(a
x

)2
(x′)2. (1.2)

Now, if we differentiate the first equation (1.1), we get

x′y′′ − x′′y′

(x′)2
=

−a2x′

x2
√
z2 − x2

(1.3)

x′′y′ − x′y′′ = a2(x′)3

x2
√
a2 − x2

. (1.4)

Thus,

κ±(x, y) =
∣∣∣∣ −a2x′

x2
√
z2 − x2

x3

a3(x′)3

∣∣∣∣ =
∣∣∣∣ x

a
√
a2 − x2

∣∣∣∣ . (1.5)

Of course, we can integrate Equation 1.1 to get

y(x) =
∫ √

a2 − x2

x
dx (1.6)

A change of variables of the form x = a sin(t) gives:

σ(t) = (a sin(t), a ln(tan(t/2)) + a cos(t)),

which gives the plane curvature as κ±(t) =
∣∣∣∣tan(t)

a

∣∣∣∣.
Also, to parameterize the tractrix by arclength, we need (x′)2+(y′)2 = 1, thus

(a
x

)2
(x′)2 =

1, which gives x′ = ± 1
ax. Let’s take a = 1 and consider just the case x′ = x. Then, x(s) = es

from which it follows that

dy

ds
=
√

1− x2

x

dx

ds
=
√

1− e2s

y(x) =
√

1− e2s − arccosh(e−s).

This requires that 0 ≤ e2s ≤ 1. Take the curve traced out in the opposite direction by
replacing s by −s. The parameterization is now:

σ(s) = (e−s,
√

1− e−2s − arccosh(es)), s ≥ 0.

For a = 1 we have the plane curvature:

κ±(s) = |σ′′(s)| = e−s√
1− e−2s

.

Let α : (a, b) → R2 be a curve. The reverse curve is α̂ : (a, b) → R2 is given by
α̂(t) = α(b− t). We wish to distinguish between these two curves.

Definition 1.6 Let e1, e2 denote the standard basis vectors in R2. An ordered pair of
vectors [u,v], u,v ∈ R2 is said to be in standard orientation if the matrix representing
the transformation from [u,v] to [e1, e2] has a positive determinant.
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If α(s) is a regular curve parameterized by arclength, then the unit tangent vector is
T(s) = α′(s). Let N(s) denote the unique unit vector perpendicular to T(s) with standard
orientation [T(s),N(s)]. N(s) is the unit normal vector to α at s. Since T(s) is a unit
vector, we see that T(s) ·T′(s) = 0. Thus, α′′(s) = T′(s) must be a multiple of N(s).

Definition 1.7 The directed curvature κ(s) of a unit-speed curve α is given by the
identity

α′′(s) = κ(s)N(s).

Note that since N(s) is a unit vector, we see that |κ(s)| = |α(s)| = κ±(s).

Theorem 1.6 (Fundamental Theorem for Plane Curves) Given any continuous func-
tion κ : (a, b) → R, there is a curve σ : (a, b) → R2, which is parameterized by arclength,
such that κ(s) is the directed curvature of σ at s for all s ∈ (a, b). Furthermore, any other
curve σ̄ : (a, b) → R2 satisfying these conditions differs from σ by a rotation followed by a
translation.

The proof of this is a very neat, simple proof which uses differential equations.

Proof: From the theorem, we have a function f : (a, b)→ R2 written as f(s) = (f1(s), f2(s))
satisfying the following system of differential equations:

(f ′1(s), f ′2(s)) = κ(s)(−f2(s), f1(s)),
subject to f(c) = u and |u| = 1

Note that if f is a solution to this differential equation, then it is a unit-speed curve
because

d

ds
(f2

1 (s) + f2
2 (s)) = 2f1(s)f ′1(s) + 2f2(s)f ′2(s)

= 2(f1(s), f2(s)) · (f ′1(s), f ′2(s))
= 2κ(s)(f1(s), f2(s)) · (−f2(s), f1(s)) = 0

Thus, |f(s)| is a constant and since |f(c)| = 1, |f(s)| = 1 for all s ∈ (a, b).

Lemma 1.1 If g(t) is a continuous (n × n)-matrix-valued function on an interval, then
there exist solutions, F : (a, b)→ Rn, to the differential equation F ′(t) = g(t)F (t).

Applying this lemma, we have a function g(s) given by

g(s) =
(

0 −κ(s)
κ(s) 0

)
The equation T′(s) = κ(s)N(s) becomes T′(s) = g(s)T(s). Thus, the above lemma gives us
the function T(s) for the curve σ(s) with the correct curvature. To find the curve σ(s) we
only need to integrate T(s). We can choose σ(c) to be any point in R2 and we can choose u
to be any unit vector in R2. Changing u at σ(c) involves a rotation. That rotation passes
through the differential equation so that another solution would appear as T(s) = ρθT(s),
where ρθ is a rotation matrix. A translation resets the point σ(c) to be any point in R2.
Thus a second solution σ(s) must satisfy

σ(s) = ρθσ(s) + ω0.

This proves the theorem.
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