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4.5 A Formula for Gaussian Curvature

The Gaussian curvature can tell us a lot about a surface. We compute K using the unit
normal U , so that it would seem reasonable to think that the way in which we embed the
surface in three space would affect the value of K while leaving the geometry of M un-
changed. This would mean that the Gaussian curvature would not be a geometric invariant
and, therefore, would not be as helpful in studying surfaces. If we can find a formula for K
which does not depend on U , we would then show that the value of K does not depend on
how M is situated in space. We will give a formula for K when depends only on E, F , and
G. These three quantities {E, F, G} are called the metric of the surface. I will give the
more general formula later, but we will derive this for the case that F = xu · xv = 0. Note
that this means that the u and v-parameter curves form perpendicular families of curves.

Theorem 4.2 (Gauss’ Theorem Egregrium) The Gaussian curvature depends only on
the metric E, F , and G,

K = − 1
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(
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Gu√
EG
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where
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∂

∂v
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∂
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Proof: This is nothing more than finding the coefficients of a vector with respect to a
particular basis.

Since we assumed that our patch is regular, we know that {xu,xv, U} forms a basis for
R3. Now, we need to eliminate U from our formula for Gaussian curvature and l = xuu ·U ,
m = xuv · U , n = xvv · U . Expand xuu, xuv, and xvv in terms of this basis.

xuu = Γu
uuxu + Γv

uuxv + lU

xuv = Γu
uvxu + Γv

uvxv + mU (4.2)
xvv = Γu

vvxu + Γv
vvxv + nU

Our job is to find the Γ’s. While they are just the coefficients in the basis expansion,
they are traditionally known as Christoffel symbols.

xuu · xu = Γu
uuxu · xu + 0 + 0

= Γu
uuE

likewise

xuu · xv = Γv
uuG

so if we can compute xuu · xu we can find Γu
uu.
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• E = xu · xu so by taking the derivative with respect to u, we get that

Eu = xuu · xu + xu · xuu = 2xu · xuu.

Therefore,

xuu · xu =
Eu

2
and Γu

uu =
Eu

2E
.

• xu · xv = 0 so differentiating with respect to u gives

0 = xuu · xv + xu · xuv or xuu · xv = −xu · xuv

• E = xu · xu and differentiating with respect to v gives Ev = 2xu · xuv. So,

Ev

2
= xu · xuv = −xuu · xv.

Thus,

Γv
uu =

xuu · xv

G
= −Ev

2G
and Γu

uv =
xuv · xu

E
=

Ev

2E

• G = xv · xv, so Gu/2 = xuv · xv so

Γv
uv =

xuv · xv

G
=

Gu

2G

• 0 = xu · xv so differentiating with respect to v and following the same technique as
above will give us

Γu
vv =

xvv · xu

E
= −Gu

2E
.

• Finally, xv · xv = G so xvv · xv = Gv/2 and

Γv
vv =

xvv · xv

G
= −Gv

2G
.

We end up with the following formulas

xuu =
Eu

2E
xu −

Ev

2G
xv + lU

xuv =
Ev

2E
xu +

Gu

2G
xv + mU

xvv = −Gu

2E
xu +

Gv

2G
xv + nU

Uu = − l

E
xu −

m

G
xv

Uv = −m

E
xu −

n

G
xv

In order to complete our proof, it is necessary to look at certain mixed third partial
derivatives. We know that the mixed partials are equal, regardless of the order in which we
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take the partials. Thus, xuuv = xuvu, or xuuv − xuvu = 0. This means that when we write
xuuv − xuvu in terms of {xu,xv, U} all of the coefficients are zero. We will concentrate on
the xv term for our result. Other terms give other results.
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)
v

xu +
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)
v

xv −
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Expand xuv, xvv and Uv by their basis expansions.
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Now, the xv coefficient of xuuv − xuvu must be zero, so
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We have to check that right hand side of the above equation is the same as the right hand
side of Equation 4.1. That means we must compute the derivatives.
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= K

Thus, we have developed the Gaussian curvature as a quantity involving only E, G, and
(implicitly) F .
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Lemma 4.4 In general the Gaussian curvature is given by
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4.6 Some Effects of Curvature

Recall that a point on a surface is an umbilic point if the principal curvatures a p are equal.

Theorem 4.3 A surface M consisting entirely of umbilic points is contained in either a
plane or a sphere.

A surface in R3 is compact if it is closed and bounded. Here bounded means that it
is contained in a sphere of sufficiently large, but finite, radius. Closed means that every
sequence of points on the surface converges to a point on the surface.

Theorem 4.4 On every compact surface M ⊂ R3 there is some point p with K(p) > 0.

Corollary 5 There are no compact surfaces in R3 with K ≤ 0. In particular, no minimal
surface embedded in R3 is compact.

Theorem 4.5 (Liebmann) If M is a compact surface of constant Gaussian curvature K,
then M is a sphere of radius 1/

√
K.
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