
Neutral Geometry

How much of our “geometry” does not depend on a parallel axiom?  How much is independent of
this particular postulate?  As you will see, a large portion of our knowledge does not depend on any
parallel postulate.  This study will then help us to see the true role of a parallel postulate in
Geometry.

Alternate Interior Angles

DEFINITION : Let / be a set of lines in the plane.  A line k is transversal of / if
(i) k /∈/ , and
(ii)  k m∩ ≠ ∅  for all m∈/ .

Let A  be transversal to m and n at points A and B, respectively.  We say that each of the angles of
intersection of A  and m and of A  and n has a transversal side in A  and a non-transversal side not
contained in A .

DEFINITION : An angle of intersection of m and k and one of n and k are alternate interior angles
if their transversal sides are opposite directed and intersecting, and if their non-transversal sides lie
on opposite sides of A .  Two of these angles are corresponding angles if their transversal sides
have like directions and their non-transversal sides lie on the same side of A .

DEFINITION : If k and A  are lines so that k ∩ = ∅A , we shall call these lines non-intersecting.

We want to reserve the word parallel for later.

ALTERNATE INTERIOR ANGLE THEOREM : If two lines cut by a transversal have a pair of
congruent alternate interior angles, then the two lines are non-intersecting.

Proof: Let m and n be two lines cut by the transversal A .  Let the points of intersection be B and B',
respectively.  Choose a point A on m on one side of A , and choose ′ ∈A n on the same side of A  as
A.  Likewise, choose C m∈  on the opposite side of A  from A.  Choose ′ ∈C n on the same side of
A  as C.  Hence, it is on the opposite side of A  from A', by the Plane Separation Axiom.

We are given that ∠ ′ ′ ≅ ∠ ′A B B CBB .  Assume that the lines m and n are not non-intersecting; i.e.,
they have a nonempty intersection.  Let us denote this point of intersection by D.  D is on one side
of A , so by changing the labeling, if necessary, we may assume that D lies on the same side of A  as

C and C'.  By Congruence Axiom 1 there is a unique point E B A∈ ′ ′  so that ′ ≅B E BD.  Since,
BB BB′ ≅ ′  (by Axiom C-2), we may apply the SAS Axiom to prove that

∆ ∆EBB DBB′ ≅ ′ .
From the definition of congruent triangles, it follows that ∠ ′ ≅ ∠ ′DB B EBB .  Now, the supplement
of ∠ ′DBB  is congruent to the supplement of ∠ ′EB B.  The supplement of ∠ ′EB B is ∠ ′DB B and
∠ ′ ≅ ∠ ′DB B EBB .  Therefore, ∠ ′EBB  is congruent to the supplement of ∠ ′DBB .  Since the angles
share a side, they are themselves supplementary.  Thus, E N∈  and we have shown that

D E N,; @⊂  or that m n∩  is more that one point, a contradiction.  Thus, m and n must be non-

intersecting.
Corollary:  If m and n are distinct lines both perpendicular to the line A , then m and n are non-
intersecting.



Proof: A  is the transversal to m and n.  The alternate interior angles are right angles.  By our
previous proposition all right angles are congruent, so the Alternate Interior Angle Theorem
applies.  m and n are non-intersecting.

Corollary : If P is a point not on A , then the perpendicular dropped from P to A  is unique.

The point at which this perpendicular intersects the line A , is called the foot of the perpendicular.

Corollary : If A  is any line and P is any point not on A , there exists at least one line m through P
which does not intersect A .

Proof: By Corollary 2 there is a unique line, m, through P perpendicular to A .  By previous
proposition there is a unique line, n, through P perpendicular to m.  By Corollary 1 A  and n are
non-intersecting.

Note that while we have proved that there is a line through P which does not intersect A , we have
not (and cannot) proved that it is unique.

Weak Exterior Angle Theorem

Let ∆ABC be any triangle in the plane.  This triangle gives us not just three segments, but in fact
three lines.

DEFINITION : An angle supplementary to an angle of a triangle is called an exterior angle of the
triangle.  The two angles of the triangle not adjacent to this exterior angle are called the remote
interior angles.

EXTERIOR ANGLE THEOREM: An exterior angle of a triangle is greater than either remote interior
angle.

Proof: We shall show that ∠ > ∠ACD A.  In a like manner, you can show that ∠ > ∠ACD B.  Then
by using the same techniques, you can prove the same for the other two exterior angles.

By trichotomy:
∠ < ∠ ∠ ≅ ∠ ∠ > ∠A ACD A ACD A ACD, , or

If ∠ = ∠ ≅ ∠A BAC ACD, then by the Alternate Interior Angle Theorem, AB  and CD  are non-
intersecting. This is impossible, since they both contain B.

Assume, then, that ∠ > ∠A ACD.  By the definition of this ordering on angles, there exists a ray

AE  between AB  and AC  so that
∠ ≅ ∠CAE ACD.

By the Crossbar Theorem, AE  intersects BC in a point G.  Again by the Alternate Interior Angle

Theorem AE  and CD  are non-intersecting. This is a contradiction.  Thus, ∠ > ∠ACD A.

PROPOSITION 1: [SAA Congruence] In triangles ∆ABC and ∆DEF  given that AC DF≅ ,
∠ ≅ ∠A D , and ∠ ≅ ∠B E , then ∆ ∆ABC DEF≅ .

PROPOSITION 2: Two right triangles are congruent if the hypotenuse and a leg of one are
congruent respectively to the hypotenuse and a leg of the other.

PROPOSITION 3: Every segment has a unique midpoint.



Proof: Let AB be any segment in the plane, and let C be any point not on AB .  Such a point exists

by Axiom I–3.  There exists a unique ray BX  on the opposite side of AB  from P such that

∠ ≅ ∠PAB XBA, by Axiom C–4.  There is a unique point Q BX∈  so that AP BQ≅ , by Axiom C–

1.  Q is on the opposite side of AB  from P by Homework Problem 9, Chapter 3 and Axiom B–4.

Since P and Q are on opposite sides of AB , PQ AB∩ ≠ ∅ .  Let M denote this point of
intersection. By Axiom B–2, either

A M B M A B A B M M A M B∗ ∗ ∗ ∗ ∗ ∗ = =, , , or

We want to show that A M B∗ ∗ , so let us assume ¬ ∗ ∗A M B1 6 .  Since ∠ ≅ ∠PAB QBA, by

construction, we have from the Alternate Interior Angle Theorem that AP  and BQ  are non-

intersecting.  If M A=  then A P M AP, , ∈  and AP AB=  which intersects BQ .  We can dispose
of the case M B=  similarly.

Thus, assume that M A B∗ ∗ .  This will mean that the line PA will intersect side MB of ∆MBQ at a
point between M and B.  Thus, by Pasch's Theorem it must intersect either MQ or BQ.  It cannot

intersect side BQ as AP  and BQ  are non-intersecting. If AP  intersects MQ then it must contain
MQ for P, Q, and M are collinear.  Thus, M A=  which we have already shown is impossible.
Thus, we have shown that M A B∗ ∗  is not possible.

In the same manner, we can show that A B M∗ ∗  is impossible. Thus, we have that A M B∗ ∗ .  This
means that ∠ ≅ ∠AMP BMQ since they are vertical angles.  By Angle-Angle-Side we have that
∆ ∆AMP BMQ≅ .  Thus, AM MB≅  and M is the midpoint of AB.

PROPOSITION 4:
(i)  Every angle has a unique bisector.
(ii)  Every segment has a unique perpendicular bisector.

PROPOSITION 5: In a triangle ∆ABC  the greater angle lies opposite the greater side and the
greater side lies opposite the greater angle; i.e., AB BC>  if and only if ∠ > ∠C A.

PROPOSITION 6: Given ∆ABC  and ∆ ′ ′ ′A B C , if AB A B≅ ′ ′  and BC B C≅ ′ ′ , then ∠ < ∠ ′B B  if and
only if AC A C< ′ ′ .

Theorems of Continuity

Elementary Continuity Principle

We will now take up the Axioms of Continuity.  We will discuss some of the different uses of the
Continuity Axioms in our work.

First, we shall need the famous Triangle Inequality. It is usually proved after we have given a
measure to line segments, but that is not necessary.

PROPOSITION 7: [Triangle Inequality ] If A, B, and C are three noncollinear points, then
AC AB BC< + , where the sum is segment addition.



Measure of Angles and Segments

To avoid some of the difficulties that we faced in the previous proofs, and to facilitate matters at a
later time, we will introduce a measure for angles and for segments.

The proof of the Theorem requires the axioms of continuity for the first time. The axioms of
continuity are not needed if one merely wants to define the addition for congruence classes of
segments and then prove the triangle inequality for these congruence classes. It is in order to prove
several of our theorems that we need the measurement of angles and segments by real numbers, and
for such measurement Archimedes's axiom is required. However, the fourth and eleventh parts of
this theorem, the proofs for which require Dedekind's axiom, are never used in proofs in the text. It
is possible to introduce coordinates without the continuity axioms, as in discussed in Appendix B of
the text.

The notation ∠ °A  will be used for the number of degrees in ∠A , and the length of segment AB

will be denoted by AB .

THEOREM 1
(i) There is a unique way of assigning a degree measure to each angle such that the following

properties hold:
(a) ∠ °A  is a real number such that 0 180°< ∠ °< °A .
(b) ∠ °= °A 90  if and only if ∠A  is a right angle.
(c) ∠ °= ∠ °A B  if and only if ∠ ≅ ∠A B.

(d) If AC  is interior to ∠DAB , then ∠ °= ∠ °+∠ °DAB DAC CAB .
(e) For every real number x between 0 and 180, there exists an angle ∠A  such that

∠ °= °A x .
(f) If ∠B  is supplementary to ∠A , then ∠ °+∠ °= °A B 180 .
(g) ∠ °> ∠ °A B  if and only if ∠ > ∠A B.

(ii)  Given a segment OI, called the unit segment.  Then there is a unique way of assigning a

length AB  to each segment AB such that the following properties hold:

(a) AB is a positive real number and OI = 1.
(b) AB CD=  if and only if AB CD≅ .
(c) A B C∗ ∗  if and only if AC AB BC= + .
(d) AB CD<  if and only if AB CD< .
(e) For every positive real number x, there exists a segment AB such that AB x= .

DEFINITION : An angle ∠A  is acute if ∠ °< °A 90 , and is obtuse if ∠ °> °A 90 .

COROLLARY : The sum of the degree measures of any two angles of a triangle is less than 180° .

This follows from the Exterior Angle Theorem and Theorem 1.

Proof: We want to show that ∠ °+∠ °< °A B 180 . From the Exterior Angle Theorem and Theorem 1.

∠ °< ∠ °
∠ °+∠ °< ∠ °+∠ °= °

A CBD

A B CBD B 180

since they are supplementary angles.



COROLLARY : [Triangle Inequality ] If A, B, and C are three noncollinear points, then

AC AB BC< + .

Theorem 1 offers an easier proof of this than the one that we gave.

Saccheri-Legendre Theorem

This theorem gives us a setting for our later exploration into non-Euclidean geometry.

SACCHERI -LEGENDRE THEOREM : The sum of the degree measures of the three angles in any
triangle is less than or equal to 180°

∠ °+∠ °+∠ °≤ °A B C 180

Proof: Let us assume not; i.e., assume that we have a triangle ∆ABC in which
∠ °+∠ °+∠ °> °A B C 180 .  So there is a positive real number, x, so that

∠ °+∠ °+∠ °= °+ °A B C x180

Let D be the midpoint of BC and let E be the unique point on AD  so that DE AD≅ .  Then by SAS
∆ ∆BAD CED≅ . This makes

∠ °= ∠ ° ∠ °= ∠ °B DCE E BAD .
Thus,

∠ °+∠ °+∠ °= ∠ °+∠ °+∠ °+∠ °
= ∠ °+∠ °+ ∠ °+∠ °
= ∠ °+∠ °+∠ °

A B C BAD EAC B ACB

E EAC DCE ACD

E A C

1 6

So, ∆ABC and ∆ACE have the same angle sum, even though they need not be congruent.  Note
that ∠ °+∠ °= ∠ °BAE CAE BAC, hence

∠ °+∠ °= ∠ °CEA CAE BAC.
It is impossible for both of the angles ∠ °CEA  and ∠ °CAE  to have angle measure greater than
1
2 ∠ °BAC , so at least one of the angles has angle measure greater than or equal to 1

2 ∠ °BAC .

Therefore, there is a triangle ∆ACE so that the angle sum is 180°+x  but in which one angle has
measure less than or equal to 1

2 ∠ °A .  Repeat this construction to get another triangle with angle

sum 180°+x  but in which one angle has measure less than or equal to 1
4 ∠ °A .  Now there is a

positive integer n so that
1

2n A x∠ °< ,

by the Archimedean property of the real numbers.  Thus, after a finite number of iterations of the
above construction we obtain a triangle with angle sum 180°+x  in which one angle has measure

less than or equal to 
1

2n A x∠ °< .

Then the other two angles must sum to a number greater than 180°  contradicting Corollary 1 to
Theorem 1. �

COROLLARY : In ∆ABC  the sum of the degree measures of two angles is less than or equal to the
degree measure of their remote exterior angle.



The Defect of a Triangle

Since the angle sum of any triangle in neutral geometry is not more than 180° , we can compute the
difference between the number 180 and the angle sum of a given triangle.

DEFINITION : The defect of a triangle ∆ABC is the number
defect( ) ( )∆ ∆ABC ABC A B C= = °− ∠ °+∠ °+∠ °δ 180 1 6

In Euclidean geometry we are accustomed to having triangles whose defect is zero.  Is this always
the case?  The Saccheri-Legendre Theorem indicates that it may not be so.  However, what we wish
to see is that the defective of triangles is preserved.  That is, if we have one defective triangle, then
all of the triangles are defective.  By defective, we mean that the triangles have positive defect.

THEOREM : [Additivity of Defect ] Let ∆ABC  be any triangle and let D be a point between A and
B.  Then defect defect defect∆ ∆ ∆ABC ACD BCD1 6 1 6 1 6= + .

COROLLARY : defect∆ABC1 6 = 0  if and only if defect defect∆ ∆ACD BCD1 6 1 6= = 0 .

A rectangle is a quadrilateral all of whose angles are right angles.  We cannot prove the existence
or non-existence of rectangles in Neutral Geometry.  Nonetheless, the following result is extremely
useful.

THEOREM: If there exists a triangle of defect 0, then a rectangle exists. If a rectangle exists, then
every triangle has defect 0.

Let me first outline the proof in five steps.

1) Construct a right triangle having defect 0.
2) From a right triangle of defect 0, construct a rectangle.
3) From one rectangle, construct arbitrarily large rectangles.
4) Prove that all right triangles have defect 0.
5) If every right triangle has defect 0, then every triangle has defect 0.

Having outlined the proof, each of the steps is relatively straightforward.

COROLLARY : If there is a triangle with positive defect, then all triangles have positive defect.


