
MA 114 Worksheet 14

MA 114 Worksheet #14: Power Series

1. (a) Give the definition of the radius of convergence of a power series
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(b) For what values of x does the series
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converge?

(c) Find a formula for the coefficients ck of the power series
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(d) Find a formula for the coefficients cn of the power series 1 + 2x + x2 + 2x3 + x4 +
2x5 + x6 + · · · .

(e) Suppose lim
n→∞

n
√
|cn| = c where c 6= 0. Find the radius of convergence of the power

series
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(f) Consider the function f(x) =
5

1− x
. Find a power series that is equal to f(x) for

every x satisfying |x| < 1.

(g) Define the terms power series, radius of convergence, and interval of convergence.
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3. Use term-by-term integration and the fact that

∫
1

1 + x2
dx = arctan(x) + C to derive

a power series centered at x = 0 for the arctangent function. Hint:
1

1 + x2
=
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1− (−x2)
.

4. Use the same idea as above to give a series expression for ln(1+x), given that

∫ x

0

1

1 + t
dt = ln(1 + x).

You will again want to manipulate the fraction
1

1 + x
=
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1− (−x)
as above.
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5. Write (1 + x2)−2 as a power series. Hint: use term-by-term differentiation.
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