ALGEBRA PRELIM, JANUARY 2025

- Provide proofs of all statements, citing theorems that may be needed.
- Do as many problems as possible and present your solutions as carefully as possible.
- All problems carry the same weight, but the individual parts of a problem may have different weights.
- (1) Let V be a finite dimensional vector space and let $I_1, I_2 \subseteq V$ be linearly independent sets with $|I_1| < |I_2|$. Prove that there exists $v \in I_2$ such that $I_1 \cup \{v\}$ is linearly independent.
- (2) Let $A \in M_n(\mathbb{C})$ be an $n \times n$ matrix with entries in \mathbb{C} . Suppose that A is invertible and A^{2024} is diagonalizable. Let $\lambda_1, \dots, \lambda_m$ be all the distinct eigenvalues of A^{2024} in \mathbb{C} . Let $p(x) \in \mathbb{C}[x]$ be the minimal polynomial of A.
 - (a) Prove that p(x) divides $(x^{2024} \lambda_1)(x^{2024} \lambda_2) \cdots (x^{2024} \lambda_m)$.
 - (b) Prove that p(x) has no repeated roots.
 - (c) Prove that A is diagonalizable.
- (3) Let H, K be subgroups of a group G. Suppose that H is normal in G. Consider the subsets

 $HK = \{hk : h \in H, k \in K\}, KH = \{kh : k \in K, h \in H\}.$

- (a) Prove that HK is a subgroup of G.
- (b) Prove that HK = KH.
- (4) Let p be a prime and let G be a group of order p^n for some integer $n \ge 1$.
 - (a) Show that the center of G is nontrivial.
 - (b) Show that G is solvable.

ALGEBRA PRELIM, JANUARY 2025

- (5) Let R be a commutative ring with unit such that every $x \in R$ satisfies $x^n = x$ for some n > 1. Show that every prime ideal of R is a maximal ideal.
- (6) Consider the ring $R = \mathbb{Z}[\sqrt{-3}] = \{a + b\sqrt{-3} : a, b \in \mathbb{Z}\}.$
 - (a) Find all units in R.
 - (b) Determine if the element 2 is irreducible in R.
 - (c) Determine if the element 2 is prime in R. (Equivalently, if $x, y \in R$ and 2 divides xy, does it follow that 2 divides either x or y?)
 - (d) Determine if R is a UFD.
- (7) In the ring of Gaussian integers $\mathbb{Z}[i]$, the ideal (1-i) is prime. What is the order of the field $\mathbb{Z}[i]/(1-i)$?
- (8) Let $K \subset \mathbb{C}$ be the splitting field for the polynomial $x^3 2$ over \mathbb{Q} .
 - (a) Determine $[K : \mathbb{Q}]$, and give a \mathbb{Q} -basis for K.
 - (b) Identify the Galois group $G = G(K/\mathbb{Q})$.
 - (c) Find all subfields of K. For each of them, determine if it is Galois over \mathbb{Q} or not.
- (9) Let $K \subset L$ be a Galois field extension of degree 351. Show that there exists a field K' with $K \subsetneq K' \subsetneq L$ such that K'/K is Galois.