ALGEBRA PRELIM, MAY 2024

- Provide proofs of all statements, citing theorems that may be needed.
- Do as many problems as possible and present your solutions as carefully as possible.
- All problems carry the same weight, but the individual parts of a problem may have different weights.
(1) Let A be an $n \times n$ matrix over an algebraically closed field. Recall that a matrix A is nilpotent if there exists a positive integer k such that $A^{k}=0$.
(a) Show that if A is nilpotent, then its only eigenvalue is 0 .
(b) Show that if the only eigenvalue of A is 0 , then the characteristic polynomial of A is x^{n}.
(c) Show that if the only eigenvalue of A is 0 , then A is nilpotent.
(2) Let V be the vector space of polynomials of degree at most 4 with real coefficients in the variable x, and let $D: V \rightarrow V$ be the linear transformation given by $D(p)=\frac{d p}{d x}$.
(a) Find the kernel of D^{2}.
(b) Find the rank of D^{2}.
(3) Let

$$
H=\left\{\left.\left(\begin{array}{ccc}
1 & a & b \\
0 & 1 & c \\
0 & 0 & 1
\end{array}\right) \right\rvert\, a, b, c \in \mathbb{F}_{2}\right\}
$$

(a) Show that H is a group under matrix multiplication.
(b) Find the order of the matrix

$$
A=\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right)
$$

(c) Show that the cyclic subgroup generated by A is normal in H.
(4) (a) Show that every group of order $88=2^{3} \cdot 11$ has a normal subgroup of order 11.
(b) Show that every group of order $2024=2^{3} \cdot 11 \cdot 23$ has a normal subgroup of order $253=11 \cdot 23$.
(5) Let d be a squarefree integer, let

$$
A=\left(\begin{array}{ll}
0 & d \\
1 & 0
\end{array}\right)
$$

and let R be the subring of $M_{2}(\mathbb{Q})$ generated by A and the identity.
(a) Compute the kernel of the homomorphism $\varphi: \mathbb{Q}[x] \rightarrow R$ given by $\varphi(f)=f(A)$.
(b) Use part (a) to show that $\mathbb{Q}[\sqrt{d}]$ is isomorphic to R.
(6) Let F be a field and let $S=\left\{f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n} \in F[x] \mid a_{1}=0\right\}$.
(a) Show that S is a subring of $F[x]$.
(b) Use the polynomial $x^{2}\left(x^{2}-1\right)$ to show that S is not a UFD.
(7) Let E be the splitting field of $x^{6}+1$ over \mathbb{Q}, and let ζ_{12} denote a primitive 12 th root of unity.
(a) Show that $E=\mathbb{Q}\left(\zeta_{12}\right)$.
(b) Identify $\operatorname{Gal}(E / \mathbb{Q})$.
(c) Find all subfields of E.
(8) Let K be a field. Prove that, if $[K(\alpha): K]$ is odd, then $K(\alpha)=K\left(\alpha^{2}\right)$.
(9) For each of the following, either provide an example or explain why it is not possible.
(a) A field extension K of \mathbb{Q} of degree 4 with $|\operatorname{Aut}(K / \mathbb{Q})|=4$.
(b) A field extension K of \mathbb{Q} of degree 4 with $|\operatorname{Aut}(K / \mathbb{Q})|=2$.
(c) A field extension K of \mathbb{Q} of degree 4 with $|\operatorname{Aut}(K / \mathbb{Q})|=3$.

