ALGEBRA PRELIM, MAY 2024

- Provide proofs of all statements, citing theorems that may be needed.
- Do as many problems as possible and present your solutions as carefully as possible.
- All problems carry the same weight, but the individual parts of a problem may have different weights.
- (1) Let A be an $n \times n$ matrix over an algebraically closed field. Recall that a matrix A is nilpotent if there exists a positive integer k such that $A^k = 0$.
 - (a) Show that if A is nilpotent, then its only eigenvalue is 0.
 - (b) Show that if the only eigenvalue of A is 0, then the characteristic polynomial of A is x^n .
 - (c) Show that if the only eigenvalue of A is 0, then A is nilpotent.
- (2) Let V be the vector space of polynomials of degree at most 4 with real coefficients in the variable x, and let $D: V \to V$ be the linear transformation given by $D(p) = \frac{dp}{dx}$.
 - (a) Find the kernel of D^2 .
 - (b) Find the rank of D^2 .
- (3) Let

$$H = \Big\{ \left(egin{array}{ccc} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{array}
ight) \mid a,b,c \in \mathbb{F}_2 \Big\}.$$

- (a) Show that H is a group under matrix multiplication.
- (b) Find the order of the matrix

$$A = \left(\begin{array}{rrr} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{array}\right).$$

- (c) Show that the cyclic subgroup generated by A is normal in H.
- (4) (a) Show that every group of order $88 = 2^3 \cdot 11$ has a normal subgroup of order 11
 - (b) Show that every group of order $2024 = 2^3 \cdot 11 \cdot 23$ has a normal subgroup of order $253 = 11 \cdot 23$.

(5) Let d be a squarefree integer, let

$$A = \left(\begin{array}{cc} 0 & d \\ 1 & 0 \end{array}\right),$$

and let R be the subring of $M_2(\mathbb{Q})$ generated by A and the identity.

- (a) Compute the kernel of the homomorphism $\varphi \colon \mathbb{Q}[x] \to R$ given by $\varphi(f) = f(A)$.
- (b) Use part (a) to show that $\mathbb{Q}[\sqrt{d}]$ is isomorphic to R.
- (6) Let F be a field and let $S = \{f(x) = a_0 + a_1x + \dots + a_nx^n \in F[x] \mid a_1 = 0\}.$
 - (a) Show that S is a subring of F[x].
 - (b) Use the polynomial $x^2(x^2-1)$ to show that S is not a UFD.
- (7) Let E be the splitting field of $x^6 + 1$ over \mathbb{Q} , and let ζ_{12} denote a primitive 12th root of unity.
 - (a) Show that $E = \mathbb{Q}(\zeta_{12})$.
 - (b) Identify $Gal(E/\mathbb{Q})$.
 - (c) Find all subfields of E.
- (8) Let K be a field. Prove that, if $[K(\alpha):K]$ is odd, then $K(\alpha)=K(\alpha^2)$.
- (9) For each of the following, either provide an example or explain why it is not possible.
 - (a) A field extension K of \mathbb{Q} of degree 4 with $|\operatorname{Aut}(K/\mathbb{Q})| = 4$.
 - (b) A field extension K of \mathbb{Q} of degree 4 with $|\operatorname{Aut}(K/\mathbb{Q})| = 2$.
 - (c) A field extension K of \mathbb{Q} of degree 4 with $|\operatorname{Aut}(K/\mathbb{Q})| = 3$.