ALGEBRA PRELIM, JUNE 2025

- Provide proofs of all statements, citing theorems that may be needed.
- Do as many problems as possible and present your solutions as carefully as possible.
- All problems carry the same weight, but the individual parts of a problem may have different weights.
- (1) Let V, W be vector spaces and let $T: V \to W$ be a function. The *graph* of T is the set

$$\{(v, T(v)) \in V \times W \mid v \in V\}.$$

Show that T is a linear transformation if and only if the graph of T is a subspace of $V \times W$.

- (2) Let V be a finite-dimensional vector space over a field k, and let $T: V \to V$ be a linear map. Suppose that $\{v, Tv, T^2v, \cdots\}$ spans V for some $v \in V$. Prove that the minimal polynomial of T is equal to the characteristic polynomial of T.
- (3) Let G be a group of order 380. Using the Sylow theorems, give the possible number of Sylow 5-subgroups and Sylow 19-subgroups. Prove that G must have either a normal subgroup of order 5 or a normal subgroup of order 19.
- (4) SL(2,3) is the group of 2×2 matrices over \mathbb{F}_3 with determinant 1.
 - (a) What is the order of SL(2,3)?
 - (b) Show that SL(2,3) has a unique element of order 2.
 - (c) Conclude that SL(2,3) is not isomorphic to the symmetric group S_4 .

ALGEBRA PRELIM, JUNE 2025

(5) Let A be a commutative ring, and let $\varphi \colon A \to A$ be a surjective ring homomorphism. If A is Noetherian, show that φ is injective.

(6) Let k be a field and let $R = k[x]/(x^3)$.

- (a) Determine if 1 x is a unit in R.
- (b) Find all zero divisors in R.

(7) Prove that $\mathbb{Q}(\sqrt[3]{2})$ is not a subfield of any cyclotomic extension of \mathbb{Q} .

(8) Let k be a field, and let $P(t), Q(t) \in k[t]$ be relatively prime polynomials. Prove that

$$\left[k(t)\colon k\Big(\frac{P(t)}{Q(t)}\Big)\right] = \max\{\deg(P),\deg(Q)\}.$$

(9) Let $f(x) = x^4 - 2 \in \mathbb{Q}[x]$ and let $K = \mathbb{Q}(2^{1/4}, i)$. Prove that K is a splitting field for f(x).

Let σ be the element in G which maps $2^{1/4} \mapsto 2^{1/4}i$ and $i \mapsto i$. Let τ be the element in G which maps $2^{1/4} \mapsto 2^{1/4}$ and $i \mapsto -i$. It can be shown that

$$G = \{1, \sigma, \sigma^2, \sigma^3, \tau, \sigma\tau, \sigma^2\tau, \sigma^3\tau\}.$$

For each of the following intermediate fields $\mathbb{Q} \subset E \subset K$, find the Galois group $\operatorname{Gal}(K/E)$ as a subgroup of G, and determine if E is Galois over \mathbb{Q} :

- (a) $\mathbb{Q}(2^{1/4})$
- (b) $\mathbb{Q}(i)$
- (c) $\mathbb{Q}(\sqrt{2},i)$.