Preliminary Examination in Analysis

January 2025

Instructions

- This is a three-hour exam on Advanced Calculus and Real or Complex Analysis.
- Please work a total of five problems (four mandatory problems, two from each section, and one optional problem). You *must* work the mandatory problems from each part
- Please indicate clearly on your test paper which optional problem is to be graded
- Please indicate clearly what theorems and definitions you are using

Advanced Calculus, Mandatory Problems

- 1. Suppose $f : \mathbb{R} \to \mathbb{R}$ is positive, bounded, and Riemann integrable on [0, 1]. Show that f^2 is Riemann integrable on [0, 1].
- 2. Suppose {a_n} is a nonnegative summable sequence and g : ℝ → ℝ is a differentiable function with g'(0) = g(0) = 0. Show that ∑[∞]_{n=1} g(a_n) converges. *Hint*: Consider g(h)/h.

Advanced Calculus, Optional Problems

- 3. Suppose $f : [0,1] \to \mathbb{R}$ is continuous. Show that for any $\epsilon > 0$ there exists M > 0 such that $|f(x) f(y)| < M|x y| + \epsilon$ for all $x, y \in [0,1]$.
- 4. Suppose $f : \mathbb{R} \to \mathbb{R}$ is a differentiable function such that f' is continuous on [0, 1]. Show that for every $\varepsilon > 0$ there exists $\delta > 0$ such that for all $x, y \in [0, 1]$ with $|x y| < \delta$,

$$\left|\frac{f(x) - f(y)}{x - y} - f'(y)\right| < \varepsilon$$

Real Analysis, Mandatory Problems

- 1. Suppose that $\{f_n\}$ is a monotone nondecreasing sequence of measurable functions with $\lim_{k\to\infty} f_k(x) = f(x)$ for all x. Using the definition of measurability, give a direct proof that the function f is measurable.
- 2. Recall that the Fourier transform \hat{f} of a function $f \in L^1(\mathbb{R})$ is

$$\widehat{f}(\xi) = \int e^{-i\xi x} f(x) \, dx$$

- (a) Show that \hat{f} is continuous on \mathbb{R} .
- (b) Show that $\widehat{f}(\xi) \to 0$ as $|\xi| \to \infty$. For this part, you may assume that the set of all linear combinations of characteristic functions of bounded open intervals is dense in $L^1(\mathbb{R})$.

Real Analysis, Optional Problems

3. Suppose that *f* is an integrable function on \mathbb{R}^d and that

$$E_{\alpha} = \left\{ x : |f(x)| > \alpha \right\}.$$

Prove that

$$\int_{\mathbb{R}^d} |f(x)| \, dx = \int_0^\infty m(E_\alpha) \, d\alpha$$

- 4. This problem concerns real-valued measurable functions $f : E \subset \mathbb{R} \to \mathbb{R}$.
 - (a) State Egoroff's Theorem.
 - (b) Suppose that E ⊂ R is a measurable set with m(E) < ∞, and that {f_n}[∞]_{n=1} is a sequence of uniformly bounded, real-valued measurable functions on E with f_n → f pointwise for a.e. x. Using Egoroff's Theorem, prove that

$$\lim_{n \to \infty} \int_E f_n(x) \, dx = \int_E f(x) \, dx.$$

Complex Analysis, Mandatory Problems

- 1. Let $\{f_n\}$ be a sequence of analytic functions on a region $\mathcal{A} \subset \mathbb{C}$ converging uniformly on compact subsets of \mathcal{A} .
 - (a) Prove that a limit function f exists that is analytic on A.
 - (b) Assume that f is not identically zero. Then, there exists a point $z_0 \in \mathcal{A}$ with $f(z_0) = 0$ if and only if there is a sequence $z_n \to z_0$ in \mathcal{A} so that $f_n(z_n) = 0$ for all n sufficiently large. HINT: Apply Rouché's Theorem.
- 2. Compute the following integral

$$\int_0^\infty \frac{x\sin(x)}{(x^2+1)^2} \, dx$$

Justify all steps of the calculation.

Complex Analysis, Optional Problems

- 3. Let *f* be analytic on the unit disk \mathbb{D} and continuous on its closure $\overline{\mathbb{D}}$. Suppose that |f(z)| = 1 for all |z| = 1.
 - (a) Prove that if f never vanishes in \mathbb{D} , then f is a constant.
 - (b) Prove that there are only finitely many zeros of f in \mathbb{D} .

(c) Suppose $a_1, a_2, ..., a_n$ are the zeros of f in \mathbb{D} . Prove that there is an angle $\theta \in \mathbb{R}$ so that

$$f(z) = e^{i\theta} \left(\frac{z - a_1}{1 - \overline{a}_1 z} \right) \cdots \left(\frac{z - a_n}{1 - \overline{a}_n z} \right).$$

4. Find all entire functions f(z) satisfying the bound

$$|f(z)| \ge |z|,$$

for all $z \in \mathbb{C}$.