Preliminary Examination in Analysis

June 2025

Instructions

- This is a three-hour exam on Advanced Calculus and Real Analysis.
- Please work a total of five problems (four mandatory problems, two from each section, and one optional problem). You *must* work the mandatory problems from each part.
- Please indicate clearly on your test paper which optional problem is to be graded.
- Please indicate clearly what theorems and definitions you are using.

Advanced Calculus, Mandatory Problems

1. Let (S,d) be a compact metric space. Show that if $\{p_j\}\subset S$ is a sequence for which

$$\sum_{j=1}^{\infty} d(p_j, p_{j+1}) < \infty,$$

then $\{p_j\}$ converges to a unique limit in S.

2. Suppose the functions $f_n, f: [0,1] \to \mathbb{R}$ are continuous and $f_n \to f$ uniformly on [0,1]. Show that

$$\lim_{n \to \infty} \int_0^1 f_n(x) \, dx = \int_0^1 f(x) \, dx.$$

Provide a counterexample if $f_n \to f$ pointwise but not uniformly.

Advanced Calculus, Optional Problems

3. Let $\{a_m\}$ be a sequence of real numbers with $\lim_{m\to\infty}a_m=L<\infty$. Let $S_n:=\sum_{j=1}^Na_j$ be the N^{th} -partial sum of the sequence. Prove that

$$\lim_{N \to \infty} \frac{1}{N} S_N = L.$$

4. Suppose that $\{a_j\}$ and $\{b_j\}$ are two bounded sequences of real numbers and that the sequence $\{a_j\}$ converges. Prove that

$$\lim_{m \to \infty} \sup (a_m + b_m) = \lim_{j \to \infty} a_j + \lim_{k \to \infty} \sup b_k.$$

Real Analysis, Mandatory Problems

- 1. This problem concerns measurable sets in \mathbb{R}^d .
 - (a) Say what it means for a subset $E \subset \mathbb{R}^d$ to be measurable.
 - (b) Suppose that $E \subset \mathbb{R}^d$ is a measurable set. Let $h \in \mathbb{R}^d$ and define

$$E + h = \{e + h : e \in E\}.$$

Show that E + h is measurable, and that m(E + h) = m(E).

- 2. This problem concerns real-valued integrable functions $f: \mathbb{R}^n \to \mathbb{R}$.
 - (a) Suppose that $\int_E f(x) dx \ge 0$ for every measurable subset E of \mathbb{R}^n . Show that $f(x) \ge 0$ a.e.
 - (b) Using your result from part (a), show that, if $\int_E f(x) dx = 0$ for every measurable subset E of \mathbb{R}^n , then f(x) = 0 a.e.

Real Analysis, Optional Problems

3. Let $\{f_k\}$ be a sequence of nonnegative measurable functions on \mathbb{R} . Suppose that $f_k \to f$ pointwise a.e., and $f_k \leq f$ a.e. Show that

$$\lim_{k \to \infty} \int_{\mathbb{R}} f_k \, dx = \int_{\mathbb{R}} f \, dx.$$

4. Suppose $|f|^2$ is integrable on \mathbb{R}^d and

$$E_{\alpha} = \{ x \in \mathbb{R}^d : |f(x)| > \alpha \}.$$

Show that

$$\int_{\mathbb{R}^d} |f|^2 = 2 \int_0^\infty \alpha m(E_\alpha) \, d\alpha.$$