Preliminary Examination in Numerical Analysis

Jan 10, 2025

Instructions:

- 1. The examination is for 3 hours.
- 2. The examination consists of eight equally-weighted problems.
- 3. Attempt all problems.

Problem 1. Let A be a real $n \times n$ matrix.

- (a) Prove that $||A||_2 = ||A^T||_2$.
- (b) Prove that $||A^T A||_2 = ||A||_2^2$.

Problem 2. Let A be an invertible upper triangular matrix and let $X = [x_{ij}] \in \mathbb{R}^{n \times n}$ be an upper triangular matrix with all the diagonal entries being zero. Prove that A - X is invertible and

$$||(A - X)^{-1}|| \le \sum_{i=0}^{n-1} ||A^{-1}||^{i+1} ||X||^{i}.$$

Problem 3. Let A be an $m \times n$ matrix and $b \in \mathbb{R}^m$ with $m \ge n$. Suppose that A has full rank and A = QR where Q is an $m \times n$ orthogonal matrix and R is an $n \times n$ upper triangular matrix with positive diagonal entries. Find the formula for x that minimizes $||Ax - b||_2$ using A = QR(you are not allowed to use the normal equation.).

Problem 4. Let $\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_n > 0$ be the singular values of $A \in \mathbb{R}^{m \times n}$. Prove that

$$\sigma_1 = \max_{x \neq 0} \frac{\|Ax\|_2}{\|x\|_2}$$
 and $\sigma_n = \min_{x \neq 0} \frac{\|Ax\|_2}{\|x\|_2}$

Problem 5. Construct the interpolating polynomial in Newton's form for the following table

Problem 6. Describe the secant method for finding the root of a smooth function f(x). Show that the method is locally superlinearly convergent and identify its order of convergence without proof.

Problem 7. Construct the following Newton-Cotes formula

$$\int_{-1}^{1} f(t)dt = a \cdot f(-1) + b \cdot f(0) + c \cdot f(1) + E(f).$$

Then, determine the degree of exactness of the formula and find an expression of the error function E(f) in terms of appropriate derivatives of f.

Problem 8. Show that the following one-step method for the initial value problem x'(t) = f(t, x) is A-stable:

$$x_{n+1} = x_n + \frac{1}{2}h\left(f(t_n, x_n) + f(t_{n+1}, x_{n+1})\right),$$

where h is the step size, i.e., $t_{n+1} = t_n + h$.