Preliminary Examination in Numerical Analysis

June 6, 2018

Instructions:

- 1. The examination is for 3 hours.
- 2. The examination consists of eight equally-weighted problems. The first four cover Matrix Theory and Numerical Linear Algebra and the last four cover Introductory Numerical Analysis.
- 3. Attempt all problems.

Problem 1. Let A be a real $n \times n$ matrix.

- a) State the Cauchy-Schwarz inequality for $n \times 1$ matrices x and y.
- b) Define $||A||_2$.
- c) Apply (a) and (b) to prove that $||A^T||_2 = ||A||_2$ and $||A^TA||_2 = ||A||_2^2$. (Hint: Start by showing that $||Ax||_2^2 \le ||A^TA||_2 ||x||_2^2$ for all $n \times 1$ matrices x.)

Problem 2. Let $A \in \mathbb{R}^{m \times n}$ have full column rank and have the QR decomposition A = QR where $Q \in \mathbb{R}^{m \times n}$ and $R \in \mathbb{R}^{n \times n}$. For any $b \in \mathbb{R}^m$, show that $x = R^{-1}Q^Tb$ is the solution to the least squares problem

$$\min_{x \in \mathbb{R}^n} \|Ax - b\|_2.$$

(You are not allowed to use the normal equation.)

Problem 3. Let A_0 be a given real matrix with real eigenvalues that have distinct absolute values. The following is an outline of the algorithm of QR iteration with a shift:

$$i = 0$$

repeat

Choose a shift σ_i near an eigenvalue of A_i

Use the QR decomposition to factor $A_i - \sigma_i I = Q_i R_i$

Let
$$A_{i+1} = R_i Q_i + \sigma_i I$$

$$i = i + 1$$

until convergence of A_i 's

- a) Show that A_i and A_{i+1} have the same eigenvalues.
- b) Describe as explicitly as possible the matrix A_i that is obtained when the algorithm converges.
- c) Describe what the algorithm of "chasing the buldge" has to do with the the above algorithm.

Problem 4. Let A be an $n \times n$ matrix with $A = [a_{ij}]$, where the a_{ij} 's may be real or complex numbers.

- a) Derive an explicit expression for $tr(A^*A)$ in terms of the a_{ij} 's.
- b) Use the Schur decomposition to show that if $\lambda_1 \dots \lambda_n$ are the eigenvalues of A repeated according to multiplicity, then

$$\sum_{j=1}^{n} |\lambda_j|^2 \le ||A||_F^2.$$

c) Show that if equality holds in the above inequality, then A is normal.

Problem 5. Let x_1, x_2, \dots, x_n be machine numbers. Consider computing $\sum_{i=1}^n x_i^2$ by the algorithm

$$p_1 = x_1^2$$
; $p_k = p_{k-1} + x_k^2$; for $k = 2, 3, \dots, n$.

Find an upper bound for the relative error of the computed p_n in terms of the machine precision ϵ and n. (You can ignore the higher order terms.)

Problem 6. Let n and k be integers with $0 \le k \le n$ and let $\omega(t)$ be a polynomial of degree n having distinct real roots t_1, \ldots, t_n satisfying

$$\int_{a}^{b} \omega(t)q(t) dt = 0$$

for all polynomials q of degree up to k-1, where a < b. Show that there exist real numbers w_1, \ldots, w_n such that

$$\int_{a}^{b} p(t) dt = \sum_{j=1}^{n} w_{j} p(t_{j})$$

holds for all polynomials p(t) of degree up to n + k - 1.

Problem 7. Consider the fixed point iteration $x_{n+1} = g(x_n)$ for $g(x) = 1 + \sin(x)$.

- 1. Show that g(x) has a fixed point $r \in (\pi/2, 5\pi/6)$.
- 2. For any $x_0 \in R$, prove that there exists $\gamma \in (0,1)$ such that $|x_{n+1} r| \le \gamma |x_n r|$ for all $n \ge 2$.

Problem 8. Consider the fourth-order Runge-Kutta method (RK4)

$$K_1 = f(t_k, y_k)$$

$$K_2 = f(t_k + h/2, y_k + hK_1/2)$$

$$K_3 = f(t_k + h/2, y_k + hK_2/2)$$

$$K_4 = f(t_k + h, y_k + hK_3)$$

$$y_{k+1} = y_k + h(K_1 + 2K_2 + 2K_3 + K_4)/6$$

for the initial value problem $y'(t) = f(t, y(t)), y(0) = y_0$. Prove that, if f(t, y) = g(t) and $g(t) \in C^4(R)$, the local truncation error is $O(h^4)$.