Preliminary Examination in Numerical Analysis

May 31, 2024

Instructions:

- 1. The examination is for 3 hours.
- 2. The examination consists of eight equally-weighted problems.
- 3. Attempt all problems.

Problem 1. Let $U \in \mathbb{R}^{n \times n}$ be a nonsingular upper triangular matrix and solve $U\mathbf{x} = \mathbf{b}$ by backward substitution. Show that barring overflow or underflow, the computed solution $\hat{\mathbf{x}}$ satisfies $(U + \delta U)\hat{\mathbf{x}} = \mathbf{b}$ with $|\delta U| \leq (n-1)\varepsilon |U| + O(\varepsilon^2)$ and ε is the machine precision. Hint: You may use without proof that $fl(\sum_{i=1}^n x_i y_i) = \sum_{i=1}^n x_i y_i (1 + \delta_i)$ with $|\delta_i| \leq n\varepsilon + \mathcal{O}(\varepsilon^2)$.

Problem 2. For $\lambda > 0$, consider the following regularized least squares problem

$$\min_{x \in \mathbb{R}^n} || Ax - b ||_2^2 + \lambda || x ||_2^2.$$

The solution satisfy the normal equation: $x = (A^T A + \lambda I)^{-1} A^T b$. Let A have SVD $A = U \Sigma V^T$, where $\Sigma \in \mathbb{R}^{n \times n}$, $\Sigma = diag(\sigma_1, \dots, \sigma_n)$, $U = [u_1, \dots, u_n]$, and $V = [v_1, \dots, v_n]$. Show that $Ax = \sum_{j=1}^n u_j \frac{\sigma_j^2}{\sigma_j^2 + \lambda} u_j^T b$.

Problem 3. Let $A \in \mathbb{R}^{n \times n}$ and $H = \begin{bmatrix} I_n & -A^T \\ -A & I_n \end{bmatrix}$ be nonsingular where I_n is the *n*-by-*n* identity matrix.

- (a) Find the eigenvalues of H in terms of the singular values of A.
- (b) Compute the condition number $\kappa_2(H)$ in terms of singular values of A.

Problem 4. Let A_0 be a given real matrix with real eigenvalues that have distinct absolute values. The following is an outline of the algorithm of QR iteration with a shift: i = 0

repeat

Choose a shift σ_i near an eigenvalue of A_i Use the QR decomposition to factor $A_i - \sigma_i I = Q_i R_i$ Let $A_{i+1} = R_i Q_i + \sigma_i I$ i = i+1

until convergence of A_i 's

- (a) Show that A_i and A_{i+1} have the same eigenvalues.
- (b) Describe as explicitly as possible the matrix A_i that is obtained when the algorithm converges.

Problem 5. Construct the natural cubic spline function with knots at -1, 0, and 1 that interpolates the given data points:

$$\begin{array}{c|cccc} t & -1 & 0 & 1 \\ \hline y & 1 & 2 & 5 \\ \end{array}$$

Problem 6. Define the order of convergence for a sequence $\{x_n\}_{n=0}^{\infty}$ that converges to α . Next, find out both the order of convergence and the associated asymptotic error constant for Newton's method when used to find the root α of a smooth function f(x) satisfying $f(\alpha) = f'(\alpha) = 0$.

Problem 7. Construct the following weighted Newton-Cotes formula

$$\int_0^1 f(x) \cdot \frac{1}{\sqrt{x}} dx = a_0 \cdot f(0) + a_1 \cdot f(1) + E(f),$$

and find an expression of the error function E(f) in terms of an appropriate derivative of f.

Problem 8. Consider the following one-step implicit method for the initial value problem x'(t) = f(t,x) with $x(a) = x_0$ and $t \in [a,b]$:

$$x_{n+1} = x_n + \frac{1}{2}h\left(f(t_n, x_n) + f(t_{n+1}, x_{n+1})\right).$$

- (a) Determine the order of local truncation error for this method.
- (b) Explain A-stability and whether this method is A-stable.