Preliminary Examination in Numerical Analysis

May 31, 2024

Instructions:

1. The examination is for 3 hours.
2. The examination consists of eight equally-weighted problems.
3. Attempt all problems.

Problem 1. Let $U \in \mathbb{R}^{n \times n}$ be a nonsingular upper triangular matrix and solve $U \mathbf{x}=\mathbf{b}$ by backward substitution. Show that barring overflow or underflow, the computed solution $\widehat{\mathbf{x}}$ satisfies $(U+\delta U) \widehat{\mathbf{x}}=\mathbf{b}$ with $|\delta U| \leq(n-1) \varepsilon|U|+O\left(\varepsilon^{2}\right)$ and ε is the machine precision. Hint: You may use without proof that $f l\left(\sum_{i=1}^{n} x_{i} y_{i}\right)=\sum_{i=1}^{n} x_{i} y_{i}\left(1+\delta_{i}\right)$ with $\left|\delta_{i}\right| \leq n \varepsilon+\mathcal{O}\left(\varepsilon^{2}\right)$.
Problem 2. For $\lambda>0$, consider the following regularized least squares problem

$$
\min _{x \in \mathbb{R}^{n}}\|A x-b\|_{2}^{2}+\lambda\|x\|_{2}^{2} .
$$

The solution satisfy the normal equation: $x=\left(A^{T} A+\lambda I\right)^{-1} A^{T} b$. Let A have SVD $A=U \Sigma V^{T}$, where $\Sigma \in \mathbb{R}^{n \times n}, \Sigma=\operatorname{diag}\left(\sigma_{1}, \cdots, \sigma_{n}\right), U=\left[u_{1}, \cdots, u_{n}\right]$, and $V=\left[v_{1}, \cdots, v_{n}\right]$. Show that $A x=\sum_{j=1}^{n} u_{j} \frac{\sigma_{j}^{2}}{\sigma_{j}^{2}+\lambda} u_{j}^{T} b$.

Problem 3. Let $A \in \mathbb{R}^{n \times n}$ and $H=\left[\begin{array}{cc}I_{n} & -A^{T} \\ -A & I_{n}\end{array}\right]$ be nonsingular where I_{n} is the n-by- n identity matrix.
(a) Find the eigenvalues of H in terms of the singular values of A.
(b) Compute the condition number $\kappa_{2}(H)$ in terms of singular values of A.

Problem 4. Let A_{0} be a given real matrix with real eigenvalues that have distinct absolute values. The following is an outline of the algorithm of QR iteration with a shift:
$i=0$
repeat
Choose a shift σ_{i} near an eigenvalue of A_{i}
Use the QR decomposition to factor $A_{i}-\sigma_{i} I=Q_{i} R_{i}$
Let $A_{i+1}=R_{i} Q_{i}+\sigma_{i} I$
$i=i+1$
until convergence of A_{i} 's
(a) Show that A_{i} and A_{i+1} have the same eigenvalues.
(b) Describe as explicitly as possible the matrix A_{i} that is obtained when the algorithm converges.

Problem 5. Construct the natural cubic spline function with knots at $-1,0$, and 1 that interpolates the given data points:

$$
\begin{array}{c|ccc}
t & -1 & 0 & 1 \\
\hline y & 1 & 2 & 5
\end{array}
$$

Problem 6. Define the order of convergence for a sequence $\left\{x_{n}\right\}_{n=0}^{\infty}$ that converges to α. Next, find out both the order of convergence and the associated asymptotic error constant for Newton's method when used to find the root α of a smooth function $f(x)$ satisfying $f(\alpha)=f^{\prime}(\alpha)=0$.
Problem 7. Construct the following weighted Newton-Cotes formula

$$
\int_{0}^{1} f(x) \cdot \frac{1}{\sqrt{x}} d x=a_{0} \cdot f(0)+a_{1} \cdot f(1)+E(f)
$$

and find an expression of the error function $E(f)$ in terms of an appropriate derivative of f.
Problem 8. Consider the following one-step implicit method for the initial value problem $x^{\prime}(t)=$ $f(t, x)$ with $x(a)=x_{0}$ and $t \in[a, b]:$

$$
x_{n+1}=x_{n}+\frac{1}{2} h\left(f\left(t_{n}, x_{n}\right)+f\left(t_{n+1}, x_{n+1}\right)\right) .
$$

(a) Determine the order of local truncation error for this method.
(b) Explain A-stability and whether this method is A-stable.

