- 1 Let $f_1: X \longrightarrow X_1$ and $f_2: X \longrightarrow X_2$ be continuous functions between topological spaces for which f_2 is an *imbedding*, i.e., a homeomorphism onto its image. Define $f: X \longrightarrow X_1 \times X_2$ by $f(x) = (f_1(x), f_2(x))$. Prove that f is also an imbedding.
- **2** Let X and Y be two metric spaces with distance functions d_X and d_Y respectively, and let $f: X \longrightarrow Y$ be any map. We'll say that f has a finite limit $a \in Y$ at infinity, if for every $\varepsilon > 0$, there is a compact set $K \subset X$ such that $d_Y(f(x), a) < \varepsilon$ for all $x \in X K$. Prove that if f is continuous and has a finite limit at infinity, then f is uniformly continuous.
- **3** A metric space X is *ultrametric*, if its distance function d satisfies

 $d(x, z) \le \max\{d(x, y), d(y, z)\},\$

for all $x, y, z \in X$.

Let X be an ultrametric space. Prove that:

- (a) Every two open balls of the same radius in X are either disjoint or equal.
- (b) If X has more than one point, then X is disconnected.
- **4** Let $A \subset U \subset X$, where A is closed, U is open, and X is normal. Prove that there exists a homeomorphism $h: X \times \mathbb{R} \longrightarrow X \times \mathbb{R}$ for which h(a,0) = (a,1), for all $a \in A$, and h(x,t) = (x,t), for all $(x,t) \in (X-U) \times \mathbb{R}$.
- 5 Let $X = \prod_{n=1}^{\infty} X_n$ have the product topology. Prove that if $X \neq \emptyset$ and locally compact, then (1) every X_n is locally compact and (2) there is an N for which X_n is compact, for all $n \geq N$.
- **6** Let I = [0, 1] and X = C(I, I) be the space of continuous functions $f : I \longrightarrow I$ with the topology induced by the uniform metric

$$d(f,g) = \sup_{t \in I} |f(t) - g(t)|.$$

(a) Is X connected?

(b) Is X compact?

7 Let $X \xrightarrow{f} Y \xrightarrow{g} X$ be continuous functions between topological spaces for which $fg \simeq id_Y$. For any $y_0 \in Y$, prove that

$$g_*: \pi_1(Y, y_0) \longrightarrow \pi_1(X, g(y_0))$$

is one-to-one.

8 Prove that every continuous map $S^2 \longrightarrow T^2$ from the 2-sphere S^2 to the 2-torus $T^2 = S^1 \times S^1$ is inessential.