- 1 Let $f:[0,1] \longrightarrow [0,1]$ be a continuous function for which $\frac{1}{2} \notin f([0,1])$. Prove that there is an $x \in [0,1]$ for which $|f(x)-x| > \frac{1}{2}$.
- **2** Let I = [0, 1] and \mathbb{R} have the usual topology, and let

$$\pi_1: I \times \mathbb{R} \longrightarrow I$$

and

$$\pi_2: I \times \mathbb{R} \longrightarrow \mathbb{R}$$

be the two projection maps. Prove that π_2 is closed but π_1 is not.

- 3 Prove that a locally compact Hausdorff space is regular.
- 4 Let A and B be two closed subsets of \mathbb{R}^n . Consider

$$A + B = \{a + b \mid a \in A, b \in B\}.$$

- (a) Prove that if A is bounded, then A + B is closed.
- (b) Give an example showing that if A and B are unbounded, then A+B need not be closed.
- **5** Define $p:[0,1] \longrightarrow S^1$ by $p(t)=(\cos 2\pi t, \sin 2\pi t)$. Prove that if $f:[0,1] \longrightarrow X$ is continuous and f(0)=f(1), then there is a unique continuous function $\tilde{f}:S^1 \longrightarrow X$ for which $\tilde{f} \circ p=f$.
- **6** Let X be a compact metric space and let $\mathcal{C}(X,X)$ be given the usual sup metric. Prove that if (f_n) , (g_n) are convergent sequences in $\mathcal{C}(X,X)$ and $\lim f_n = f$, $\lim g_n = g$, then $\lim g_n \circ f_n = g \circ f$.
- 7 Let Y be a compact subset of \mathbb{R}^n which is a retract of some open subset U of \mathbb{R}^n . Prove that there is an $\varepsilon > 0$ which satisfies the following property: If X is any space and $f, g: X \longrightarrow Y$ are continuous functions which satisfy $d(f(x), g(x)) \leq \varepsilon$, for all $x \in X$, then f is homotopic to g. [Y is a retract of U if $Y \subset U$ and there is a continuous function $r: U \longrightarrow Y$ such that r(y) = y for all $y \in Y$.]
- **8** Let P^2 be the projective plane. Prove that every covering map $p:P^2\longrightarrow P^2$ is a homeomorphism.