- **1** Prove that $f : \mathbb{R} \{0\} \longrightarrow \mathbb{R} \{0\}, f(x) = 1/x$, is continuous.
- **2** Let X be a Hausdorff space in which every subset is compact. Prove that X is finite.
- **3** Let X and Y be compact metric spaces and let $\{f_n : X \longrightarrow Y\}_{n=1}^{\infty}$ be a collection of continuous surjections for which the sequence (f_n) converges uniformly to a function $f : X \longrightarrow Y$. Prove that f must be surjective.
- 4 Let X be a connected Hausdorff space and let \tilde{X} be its one-point compactification. Prove that \tilde{X} is connected if and only if X is not compact.
- 5 Let $\mathbb{R}^{\omega} = \mathbb{R} \times \mathbb{R} \times \cdots$ have the product topology and let $\pi_i : \mathbb{R}^{\omega} \longrightarrow \mathbb{R}$ be the usual projection map onto the *i*th factor. Let (x_n) be a sequence of points in \mathbb{R}^{ω} such that each sequence $(\pi_i(x_n))$ converges to $a_i \in \mathbb{R}$. Prove that (x_n) converges to the point $a = (a_1, a_2, \ldots)$.
- 6 Prove that a retract of a simply connected space is simply connected.
- 7 Prove that the complement of a finite set in \mathbb{R}^3 is simply connected.
- 8 Let X be a compact Hausdorff space and let $\{A_n\}_{n=1}^{\infty}$ be a collection of closed sets for which each A_n has empty interior. Prove that $\bigcup_{n=1}^{\infty} A_n$ has empty interior. (This is a special case of the Baire Category Theorem.)