1 Let $X_1 \subset X_2 \subset \cdots$ be a sequence of topological spaces such that each X_n is a closed subspace of X_{n+1} , and let

$$X = \bigcup_{n=1}^{\infty} X_n.$$

Define

 $\mathcal{T} = \{ U \mid U \subset X \text{ and each } U \cap X_n \text{ is open in } X_n \}.$

- (a) Prove that (X, \mathcal{T}) is a topological space.
- (b) Prove that each X_n is closed in (X, \mathcal{T}) .
- **2** (a) Show that every path connected space is connected, but that connected spaces need not be path connected.
 - (b) Give an argument that connected open subsets of the plane are path connected. What topological properties are used in the argument?
- **3** (a) Given that X and Y are finite spaces, each of which contains a 1–1 continuous image of the other, prove that X and Y are homeomorphic.
 - (b) Show that if the word 'finite' in the above statement is replaced with 'connected', the statement is false.
- 4 Let X be a topological space, (Y, d) a metric space. Let $\mathcal{C}(X, Y)$ be the set of all continuous functions $f: X \longrightarrow Y$. For $f \in \mathcal{C}(X, Y)$ and a positive continuous function $\delta: X \longrightarrow \mathbb{R}_+$, define

 $B(f,\delta) = \{g \in \mathcal{C}(X,Y) \mid d(f(x),g(x)) < \delta(x) \text{ for all } x \in X\}.$

It is easy to prove that the sets $B(f, \delta)$ form a basis for a topology on $\mathcal{C}(X, Y)$ called the *fine topology*.

Consider the case $X = Y = \mathbb{R}$. Let $A \subset \mathcal{C}(\mathbb{R}, \mathbb{R})$ be the subset of all strictly positive functions.

- (a) Show that the constant function 0 belongs to the closure of A in the fine topology.
- (b) Show that there is no sequence of strictly positive functions converging to 0 in the fine topology.
- (c) Conclude that the fine topology on $\mathcal{C}(\mathbb{R},\mathbb{R})$ is not metrizable.
- **5** Let $K \subset \mathbb{R}^n$ be a compact space and $f: K \longrightarrow \mathbb{R}_+$ be a continuous function. Prove that the "*f*-neighborhood"

 $N_f(K) = \{ x \in \mathbb{R}^n \mid \text{for some } k \in K, \, \|x - k\| \le f(k) \}$

of K is also compact.

- 6 Classify the following spaces:
 - (a) The 1-point compactification of the discrete integers.
 - (b) The 1-point compactification of the open unit interval (0, 1).
 - (c) The 1-point compactification of the half-open unit interval [0, 1).
 - (d) The convergent sequence $\{0, 1, 1/2, 1/3, \dots, 1/n, \dots\}$.
 - (e) The quotient space of the reals obtained from the equivalence relation: xRy if and only if x y is an integer.
 - (f) The rationals in [0, 1).
 - (g) The rationals in (0, 1).
 - (h) The closed unit interval [0, 1].

Note: Group the spaces into homeomorphism classes, giving as much reasoning as time permits. Especially, give an argument that (f) and (g) are homeomorphic.

- 7 Let $S^1 = \{(x, y) \in \mathbb{R}^2 | x^2 + y^2 = 1\}$ be the standard unit circle. Prove that every homeomorphism $h: S^1 \longrightarrow S^1$ is homotopic to either the identity map or the reflection in the *x*-axis.
- 8 Let $p: E \longrightarrow B$ be a covering map with E path connected. Prove that every continuous map $F: E \longrightarrow E$ satisfying $p \circ F = p$ is surjective.