

- 1. Prove: X is Hausdorff if and only if the diagonal $\Delta_X = \{(x,x)|x\in X\}$ is closed in the product space $X\times X$.
- 2. Prove that in a metrizable space, every closed set is the intersection of a countable family of open sets, and every open set is the union of a countable family of closed sets.
- 3. Let X be a topological space satisfying the following axiom: If A and B are any two disjoint closed subsets of X, then there exist two disjoint open sets U, V such that $A \subset U$ and $B \subset V$. Show that the relation $R: \{x\} \cap \{y\} \neq \emptyset$ between two points x, y of X is an equivalence relation.
- 4. Show that \mathbb{R}^{ω} is not locally compact in the box topology.
- 5. Let X be a connected space and let $X = A \cup B$, where A and B are closed subsets. Prove that if $A \cap B$ is connected, then A and B are also connected.
- 6. Let X be a metric space which is totally bounded, i.e. for every $\epsilon > 0$, there is a finite covering of X by ϵ -balls. Prove that X has a countable dense subset.
- 7. (a) Prove that if X is contractible, then $\pi_1(X, x_0)$ is trivial for all $x_0 \in X$.
- (b) Let P^2 be the projective plane, i.e. the quotient space obtained from the unit disk B^2 by identifying each x on the unit circle with its antipodal point -x. Show that P^2 is not contractible.
- 8. Let $O \in U \subset B^2 \subset \mathbb{R}^2$, where O is the origin and U is open in \mathbb{R}^2 . Prove that there does not exist a retraction $r: \overline{U} \to Bd(U)$.