Preliminary Exam - Topology - January 4, 2006

- 1. Prove that if X is a space which is sequentially compact, then X must be limit point compact.
- 2. Let X be a locally connected space and let C be the collection of all its components.
 - (a) Give an example in which C is uncountable.
 - (b) Prove that if X is additionally assumed to be separable, then C is countable.
- 3. Let $p: \mathbb{R}^1 \to S^1$ be the covering map defined by $p(x) = (\cos(2\pi x), \sin(2\pi x))$ and let $f: [0,1] \to S^1$ be a path. Assume that f_1 and f_2 are two liftings of f for which $f_1(0) = f_2(0) + 1$. Prove that $f_1(t) = f_2(t) + 1$ for all $t \in [0,1]$.
- Show that a continuous map from a compact space onto a Hausdorff space is a quotient map.
- 5. Compute the fundamental group of the projective plane.
- 6. Show that the comb space is path connected but not locally path connected. (By the comb space we mean the subspace C of the Euclidean plane \mathbb{R}^2 given by $C = ([0,1] \times 0) \cup (A \times [0,1])$, where $A = \{x | x = 0 \text{ or } x = \frac{1}{n} \text{ for } n \text{ a positive integer } \}$).
- Construct a distance on the real line with respect to which the real line is not complete.
- 8. A topological property \mathcal{P} is weakly hereditary if every closed subspace of a space with property \mathcal{P} has property \mathcal{P} . Which of the following properties is weakly hereditary? Prove or give a counterexample: connected, normal, locally compact Hausdorff, Lindelöf.