Topology Preliminary Exam January 4, 2007

Note: \mathbb{R} denotes the reals with the usual topology. \mathbb{R}^2 denotes the product space $\mathbb{R} \times \mathbb{R}$.

- 1. Two subspaces A and B of R are *similar* if there is a homeomorphism f of R such that f(A) = B.
 - i) True or false and why? Any subspace A of \mathbb{R} which is homeomorphic with [0,1] is similar to [0,1].
 - ii) Find two connected subspaces A and B of $\mathbb R$ which are homeomorphic but not similar.
- 2. Prove that any space with the fixed point property must be T_0 . (Recall: X has the fixed point property if for each continuous function $f: X \to X$, there is a point $x \in X$ such that f(x) = x; X is T_0 if for any two distinct points of X there is an open set containing one but not the other.)
- 3. A space X is said to be weakly locally path connected (WLPC) if for each $x \in X$ and open set U containing x there exists an open set V such that $x \in V \subset U$ and such that any two points of V can be connected by a path in U. Prove that a retract of a WLPC space must be WLPC.
- 4. Let M be the space obtained from a torus by collapsing a meridian circle to a point and L the space obtained from a torus by collapsing a longitudinal circle to a point. Show that the two quotient spaces M and L are homeomorphic.
- 5. Show that a normal space X is separable if and only if there is a countable subspace $A \subset X$ such that the restriction map $\rho: \mathcal{C}(X,\mathbb{R}) \to \mathcal{C}(A,\mathbb{R})$ is injective. $[\mathcal{C}(X,\mathbb{R})$ denotes the set of all continuous real valued functions on X and $\rho(f)$ equals f restricted to A.
- 6. Let $f: \mathbb{R}^2 \to X$ be a function which satisfies the following property. For each continuous function $a: [0,1] \to \mathbb{R}^2$, the composition $f \circ a: [0,1] \to X$ is continuous. Prove that f must be continuous.
- 7. Let $X = \mathbb{R}^2 \{(0,0), (1,0)\}$ and let $Y = \mathbb{R}^2 \{(0,0)\}$. Prove that there is no covering map $p: X \to Y$.
- 8. Prove that a topological space which admits a universal covering space must be semilocally simply connected.