DEPARTMENT OF MATHEMATICS

TOPOLOGY PRELIMINARY EXAMINATION JANUARY 8, 2009

- **1** If X is a metric space and $Y \subset X$ is complete, prove that Y is closed.
- 2 Define $A = \{(x, y) \in \mathbb{R}^2 \mid x > 0 \text{ and } y < x^2\}$ and, for any $\alpha > 0$, define $f_{\alpha} : \mathbb{R} \longrightarrow \mathbb{R}$ by

$$f_{\alpha}(x) = \begin{cases} 0, & \text{if } (x, \alpha x) \in A, \\ 1, & \text{if } (x, \alpha x) \notin A. \end{cases}$$

Determine the values of x for which f_{α} is continuous.

- **3** Let A be a subset of the Euclidean space \mathbb{R}^n . Prove that if Bd(A) is connected, then Cl(A) is also connected. Here Bd(A) = Cl(A) Int(A) is the difference between the closure and the interior of A in \mathbb{R}^n . [*Hint:* \mathbb{R}^n is connected, even path connected.]
- 4 Find a metric space and two balls in it such that the ball with the smaller radius contains the ball with the larger radius and does not coincide with it.
- 5 Let $F: X \times I \longrightarrow Y$ be a homotopy. Prove that the map $\gamma: I \longrightarrow \mathcal{C}(X, Y)$ defined by $\gamma(t)(x) = F(x, t)$ is continuous. Here I = [0, 1] and $\mathcal{C}(X, Y)$ is the space of continuous functions $X \longrightarrow Y$ with the compact-open topology.
- 6 Define an equivalence relation \sim on **R** by

 $x \sim y \quad \Leftrightarrow \quad x = y \quad \text{or} \quad x, y \in [0, 1].$

Prove that the quotient space \mathbf{R}/\sim is homeomorphic to \mathbf{R} .

- 7 Prove that every covering map $p: X \longrightarrow B$ with simply connected B and path connected X is a homeomorphism.
- 8 Let $A = S^1 \times \{(0,0)\} \subset \mathbf{R}^2 \times \mathbf{R}^2 = \mathbf{R}^4$, where S^1 is the unit circle in \mathbf{R}^2 . Prove that $\mathbf{R}^4 A$ is simply connected.