DEPARTMENT OF MATHEMATICS

Topology Preliminary Examination January 6, 2011

- 1 Let R have the finite complement topology. Is the subspace topology on $\mathbf{Z} \subset \mathbf{R}$ the same as the discrete topology? Justify your answer.
- **2** Let X = [-1, 1] and define a topology \mathcal{T} on X by declaring a set U to be open if and only if either $0 \notin U$ or $(-1, 1) \subset U$.
 - (a) Is the set {1} open, closed, neither, or both?
 - (b) Is the set $\{-1,1\}$ open, closed, neither, or both?
 - (c) Is the set (0,1) open, closed, neither, or both?
 - (d) Is this the same as the discrete topology on [-1, 1]?
 - (e) What is the subspace topology on $X \{0\}$?
 - (f) Is X compact?
 - (g) Is X connected? locally connected?
 - (h) Is X Hausdorff?
- **3** Let X and Y be topological spaces and $f: X \longrightarrow Y$ be a continuous closed surjective function. Show that the topology on Y is the quotient topology defined by f.
- 4 Let (X,d) be a metric space. Prove that if every continuous function $f: X \longrightarrow \mathbf{R}$ is bounded (i.e. if for some R > 0 and all $x \in X$ we have |f(x)| < R), then X is compact.
- 5 Let X, Y be topological spaces, and $\mathcal{C}(X,Y)$ be the space of continuous functions $f: X \longrightarrow Y$ with the compact-open topology. Prove that if X has n points and has the discrete topology, then $\mathcal{C}(X,Y)$ is homeomorphic to Y^n with the product topology.
- 6 State the van Kampen theorem and use it to calculate $\pi_1(X)$, where X is the wedge of the two-sphere and the circle, i.e. X is homeomorphic to

$$\left\{(x,y,z)\in \mathbf{R}^3 \mid (x+1)^2+y^2+z^2=1\right\} \cup \left\{(x,y,z)\in \mathbf{R}^3 \mid z=0 \text{ and } (x-1)^2+y^2=1\right\}.$$

- 7 Suppose X is a path connected, locally path connected space with finite fundamental group. Prove that all maps $X \to S^1$ are nullhomotopic.
- 8 Suppose $U \subset \mathbf{R}^2$ is an open set and $x \in U$. Show that $U \{x\}$ is not simply connected.