- 1 Let $f: X \longrightarrow Y$ be a surjection, where X is Hausdorff and Y is arbitrary. Assume that for each open cover $\{U\}$ of X there is an open cover $\{V\}$ of Y such that $\{f^{-1}(V)\}$ refines $\{U\}$. Prove that f is one-to-one.
- **2** Let (X, d) be a metric space and assume that for every descending sequence $A_1 \supset A_2 \supset \cdots$ of non-empty closed sets whose diameters diam $A_n \rightarrow 0$, the intersection $\bigcap_{n=1}^{\infty} A_n \neq \emptyset$. Prove that (X, d) is complete.
- **3** Let X be a metric space. Prove that a set $A \subset X$ is open if and only if for every compact $C \subset X$, $A \cap C$ is open in C.
- 4 (a) Give an example of a continuous surjection $f: X \longrightarrow Y$ for which X is locally compact and Y is not locally compact.
 - (b) Let X be locally compact and $r: X \longrightarrow A$ be a retraction. Prove that A is locally compact.
- **5** Let $f: (0,1) \longrightarrow (0,1)$ be a continuous increasing function (i.e. $x \le y \Rightarrow f(x) \le f(y)$). Prove that f is uniformly continuous.
- **6** Let X be normal and let $X = U_1 \cup U_2$, where U_1 and U_2 are open. Prove that there exist continuous functions $f_i : X \longrightarrow [0, 1], i = 1, 2$, such that $f_1(x) + f_2(x) = 1$, for all $x \in X$, and $f_i(y) = 0$ for all $y \in X U_i$.
- 7 Let $A \subset \mathbb{R}^2$ be a bounded non-empty set with interior IntA and boundary BdA. If $(0,0) \in$ IntA, prove that there is a point $(x,0) \in \mathbb{R}^2$ for which $[0,x) \times \{0\} \subset$ IntA and $(x,0) \in$ BdA.
- 8 Prove that the fundamental group of S^2 is trivial.
- **9** Let $p: E \longrightarrow B$ be a covering map. Suppose that p has a section, i.e. there is a continuous map $\sigma: B \longrightarrow E$ such that $p \circ \sigma = \mathrm{id}_B$. Let $e \in E$ and b = p(e).
 - (a) Prove that

$$p_*: \pi_1(E, e) \longrightarrow \pi_1(B, b)$$

is an isomorphism.

- (b) Prove that if E is path connected, then p is a homeomorphism.
- 10 One of the fundamental results of Topology II is the following: $\pi_1(S^1)$ is isomorphic to \mathbb{Z} . Give a precise description of this isomorphism. Be as complete as time permits.