- 1 Define "embedding". Give two spaces X and Y such that X embeds in Y and Y embeds in X, but X and Y are not homeomorphic.
- (a) Sketch a homeomorphism between [0,1] × [0,1) and (0,1) × [0,1).
 (b) If X × W and Y × W are homeomorphic, must X and Y be homeomorphic?
- **3** Let $X, (Y_1, d_1), (Y_2, d_2)$ be metric spaces and let D be the metric on $Y_1 \times Y_2$ defined by

$$D((y_1, y_2), (y_1', y_2')) = (d_1(y_1, y_1')^2 + d_2(y_2, y_2')^2)^{1/2}$$

Prove that a function $f: X \longrightarrow Y_1 \times Y_2$ is uniformly continuous if and only if $\pi_i \circ f: X \longrightarrow Y_i$ is uniformly continuous, i = 1, 2 ($\pi_i: Y_1 \times Y_2 \longrightarrow Y_i$ is the canonical projection).

- 4 Let X be a compact metric space and let A_1, A_2, A_3 be closed sets in X such that $A_1 \cap A_2 \cap A_3 = \emptyset$. Prove that there exists a $\delta > 0$ which satisfies the following property: If $A \subset X$ has diameter $< \delta$, then there is an *i* for which $A \cap A_i = \emptyset$.
- 5 Let

$$T = \{ (x, y) \in \mathbb{R}^2 \mid x, y \ge 0, x + y \le 1 \}.$$

Show that if A is a closed subset of a normal space X and $f: A \longrightarrow T$ is a continuous map, then f can be extended to a continuous map $F: X \longrightarrow T$.

- 6 A topological space X is said to have the fixed point property if each continuous map $f: X \longrightarrow X$ has a fixed point. Let (X, d) be a compact metric space and for all $n \ge 1$ let $A_n \subset X$ satisfy the property that there exists a continuous function $f_n: X \longrightarrow A_n$ for which $d(f_n(x), x) < 1/n$ for all $x \in X$. Prove that if each A_n has the fixed point property, then so does X.
- 7 Let $H \subset \mathbb{R}^n$ be an (n-2)-dimensional subspace. Determine the fundamental group of $\mathbb{R}^n H$.
- 8 Let X be a topological space, let $\mathcal{C}(I, X)$ be the space of continuous maps from the interval I = [0, 1] to X with the compact-open topology, and let $A \subset \mathcal{C}(I, X)$ be the subspace of constant maps. Show
 - (a) A is homeomorphic to X.
 - (b) A is a deformation retract of $\mathcal{C}(I, X)$. [Hint: Consider the map $(f, t) \mapsto g$, where $f \in \mathcal{C}(I, X), t \in I$, and g(s) = f(ts).]
- **9** Let $p: E \longrightarrow B$ be a covering map, let Y be path connected and locally path connected, and let $f, g: Y \longrightarrow B$ be continuous functions which are homotopic. Prove that if f can be lifted to a map $\tilde{f}: Y \longrightarrow E$, then g can be similarly lifted.