- 1 X is a topological space. Let $\{f_n : X \longrightarrow \mathbb{R}\}$ be a sequence of continuous real-valued functions.
 - (a) Define what it means for $\{f_n : X \longrightarrow \mathbb{R}\}$ to converge *uniformly* to the function $f : X \longrightarrow \mathbb{R}$.
 - (b) Prove that the limit of a uniformly convergent sequence of continuous functions is itself continuous.
- **2** Let $f: X \longrightarrow Y$ be a continuous surjection, where X is compact and Y Hausdorff. Assume that Y is connected and that $f^{-1}(y)$ is connected for each $y \in Y$. Prove that X must be connected.
- **3** Let $f: [0,1] \longrightarrow [0,1]$ be a continuous function such that f(0) = 0 and

$$|f(x) - f(y)| \ge |x - y|$$

for all $x, y \in [0, 1]$. Prove that f(t) = t for all $t \in [0, 1]$.

- 4 Let $p: X \longrightarrow Y$ be a quotient map and let $B \subset Y$ be a set for which $p^{-1}(y)$ is a singleton for all $y \in Y B$. Prove that if $A = p^{-1}(B)$ is a retract of X, then B is a retract of Y.
- 5 A continuous function $f: X \longrightarrow Y$ is said to be proper if $f^{-1}(C)$ is compact for all compact sets $C \subset Y$.
 - (a) Give an example of a continuous function which is *not* proper.
 - (b) Let $f: X \longrightarrow Y$ and $g: Y \longrightarrow Z$ be continuous functions for which the composition $g \circ f$ is proper. Prove that f must be proper provided that Y is Hausdorff.
- 6 Prove that if $f: S^1 \longrightarrow \mathbb{R}^1$ is a continuous function such that f(-x) = -f(x) for all unit vectors x in the circle S^1 , then $f(x_0) = 0$ for some unit vector x_0 .
- 7 Let $p: E \longrightarrow B$ be a covering map, where B is locally connected. Assume that there exists a continuous function $f: B \longrightarrow E$ for which p(f(b)) = b for all $b \in B$. Prove that f(B) must be an open set.
- 8 Let $T = S^1 \times S^1$ be the torus.
 - (a) Let $j: S^1 \times \{(1,0)\} \longrightarrow T$ be the inclusion and use your knowledge of $\pi_1(T)$ to identify the quotient group $\pi_1(T)/\operatorname{im}(j_*)$.
 - (b) Now use the corollary of the Seifert-van Kampen Theorem to compute $\pi_1(X)$ where $X = T \cup B$ and B is a copy of B^2 for which

$$T \cap B = S^1 \times \{(1,0)\} = Bd(B).$$