- 1 Define the suspension SX of a topological space X to be the quotient space of $X \times [0,1]$ obtained by identifying (x,0) with (x',0) and (x,1) with (x',1) for all $x, x' \in X$. Show that the *n*-dimensional sphere $S^n = \{x \in \mathbb{R}^{n+1} \mid ||x|| = 1\}$ is homeomorphic to the suspension SS^{n-1} of the (n-1)-dimensional sphere S^{n-1} for $n \ge 1$.
- **2** Let X be the subspace of \mathbb{R}^2 defined by

$$X = \{(0,0)\} \cup \{(1,0)\} \cup \bigcup_{n \ge 1} ([0,1] \times \{1/n\}).$$

Prove:

- (a) The connected component of (0,0) is the singleton $\{(0,0)\}$.
- (b) Every set $A \subset X$ which is both open and closed and contains (0,0) also contains (1,0).
- **3** Let $X = \prod_{\alpha \in J} X_{\alpha}$ be equipped with the product topology. Prove that if X has a countable base, then
 - (a) Each X_{α} has a countable base.
 - (b) For all but countably many indices α the topology of X_{α} is indiscrete.
- 4 Let X be compact and let $\Delta = \{(x, x) | x \in X\}$ be the diagonal in $X \times X$. Prove that if the quotient space $(X \times X)/\Delta$ is metrizable, then so is X.
- 5 Prove the following generalization of the Lebesgue number lemma. Let A be a compact subset of a metric space X and let \mathcal{U} be an open cover of A by open sets in X. Then there is an $\varepsilon > 0$ which satisfies the property that if S is a subset of X for which $S \cap A \neq \emptyset$ and diam $(S) < \varepsilon$, then S lies in some element of \mathcal{U} .
- **6** Let $p: X \longrightarrow Y$ be a surjective map of topological spaces. Prove that the following are equivalent:
 - (a) p is a quotient map.
 - (b) For every map $f: Y \longrightarrow Z$, f is continuous if and only if $f \circ p$ is continuous.
- 7 Let $p: E \longrightarrow B$ be a covering map, $B_0 \subset B$, $e_0 \in E$ and $p(e_0) = b_0 \in B_0$. Prove that if $\pi_1(B_0, b_0) \longrightarrow \pi_1(B, b_0)$

is an isomorphism, then

$$\pi_1(p^{-1}(B_0), e_0) \longrightarrow \pi_1(E, e_0)$$

is also an isomorphism. (The arrows are inclusion-induced homomorphisms.)

- 8 Let X and Y be respectively the Möbius band and the cylinder $S^1 \times [0, 1]$.
 - (a) Prove that X and Y have the same homotopy type.
 - (b) Explain why X and Y are not homeomorphic.