- 1 Let X be a space in which all singletons are closed sets and which satisfies the following property: For every open set U and $p \in U$ there exists an open and closed set V such that $p \in V \subset U$. Prove that all components of X are singletons.
- **2** Let X be a locally compact space. Prove that the following three properties are equivalent:
 - (a) $X = \bigcup_{n=1}^{\infty} C_n$, where C_n is compact for n = 1, 2, ...
 - (b) $X = \bigcup_{n=1}^{\infty} C_n$, where C_n is compact and $C_n \subset \text{Int}(C_{n+1})$ for n = 1, 2, ...
 - (c) X is Lindelöf, i.e. from any open covering of X we can choose a countable subcovering.
- **3** Let X be a metric space, let $D \subset X$ be dense, and let $X \longrightarrow Y$ be a continuous function for which $f|_D : D \longrightarrow Y$ is a homeomorphism. Prove that D = X.
- **4** Let A be a subspace of X which is a deformation retract of X. Prove that if $f, g: X \longrightarrow Y$ are continuous functions for which f(a) = g(a), for all $a \in A$, then f is homotopic to g.
- 5 Let $p: E \longrightarrow B$ be a covering map and let $f: S^2 \longrightarrow E$ be a continuous function for which $pf: S^2 \longrightarrow B$ is null-homotopic. Prove that f is null-homotopic. You may find the general lifting theorem useful.
- 6 Let $f: S^2 \longrightarrow S^2$ be a continuous map such that $f(-x) \neq f(x)$ for all $x \in S^2$. Show that there is a continuous map $g: S^2 \longrightarrow S^2$ homotopic to f such that g(-x) = -g(x) for all $x \in S^2$. [Hint: Take the midpoint of the shortest arc joining f(x) and -f(-x).]
- 7 Prove form the first principles that a closed unit interval is connected in the usual topology.
- 8 (a) Show that if X is a contractible space, then X is path connected and π₁(X) = 0.
 (b) Give an example without proof of a non contractible path connected space with π₁(X) = 0.