Preliminary Exam - Topology - June 3, 2005

- 1. Let I = [0, 1] have the usual topology and let A be a subset of I. Let \mathcal{T}_1 be the subspace topology A inherits from I and let \mathcal{T}_2 be the order topology on A.
 - (a) Prove that if A is a closed subset of I, then $T_1 = T_2$.
 - (b) Find a subset A of I where $T_1 \neq T_2$.
- 2. Prove that there is no 1-1 continuous mapping of the unit circle S^1 into the real line R^1 .
- 3. Let X be compact and let \mathcal{F} be a family of continuous real-valued functions on X which satisfies the following properties.
 - (a) If f and g are in \mathcal{F} , then their product fg is also in \mathcal{F} .
 - (b) For each $x \in X$ there is a neighborhood U_x of x and an $f \in \mathcal{F}$ for which $f(U_x) = \{0\}$.

Prove that \mathcal{F} contains the function $f \equiv 0$.

- 4. Let X be a topological space and let \sim be the equivalence relation defined on X by: $x \sim y$ iff y belongs to the component of X containing x.
 - (a) Prove that if A and B are disjoint closed sets for which $A \cup B$ is saturated with respect to \sim , then so are both A and B.
 - (b) Prove that the quotient space X/\sim is totally disconnected.
- 5. Let A be the graph of the curve $y = \sin(1/x), 0 < x \le 1$, and let B be an arc in the plane with endpoints (0,0) and $(1,\sin(1))$ which intersects the closure of A, i.e. \bar{A} , in precisely these points. Prove that the space $X = \bar{A} \cup B$ is simply connected.
- 6. Let X be the quotient space of S^2 obtained by identifying the north and south poles to a single point.
 - (a) Explain how X is obtained by attaching a 2-cell to S^1 by using a copy of S^1 arising from an arc in S^2 between the poles.
 - (b) Use (a) to compute the fundamental group of X.
- 7. Let $p: E \to B$ be a simply connected covering space of B, let B' be a subset of B which is path connected and locally path connected, and let E' be a path component of $p^{-1}(B')$.
 - (a) Prove that $p: E' \to B'$ is a covering space of B'.
 - (b) Prove that $p: E' \to B'$ is the covering space corresponding to the kernel of the inclusion-induced homeomorphism $\pi_1(B') \to \pi_1(E')$.

 [Hint: Observe that each loop in the kernel comes from a loop in E.]