DEPARTMENT OF MATHEMATICS

TOPOLOGY PRELIMINARY EXAMINATION JUNE 5, 2009

1 Let $X = \{1, 2, 3, ...\}$ have the finite complement topology

$$\mathcal{T} = \{\emptyset\} \cup \{A \mid A \subset X \text{ and } X - A \text{ is finite} \}.$$

Prove that any continuous function $f: X \longrightarrow \mathbf{R}$ must be constant.

2 The set $M(2, \mathbf{R})$ of all 2×2 matrices with real entries can be identified with \mathbf{R}^4 because there are 4 real-valued entries in the matrix. Consider the following subspace of $M(2, \mathbf{R})$:

$$D := \{A \in M(2, \mathbf{R}) : \det(A) \in [-3, 5]\}.$$

- (a) Is D compact? Justify your answer.
- (b) Is D path-connected? Justify your answer.
- **3** Let X be a topological space and suppose there is a $p \in X$ such that if $U \subset X$ is open and $p \in U$, then U = X. Prove that X is compact and path connected.
- 4 Let $f, g, h : X \longrightarrow Y$ be three continuous functions. Prove that if Y is Hausdorff, then the set

$$U = \{x \in X \mid f(x) \neq g(x) \neq h(x) \neq f(x)\}$$

is open.

5 Let $B^2 \subset \mathbf{R}^2$ be the open unit disc:

$$B^{2} = \left\{ x \in \mathbf{R}^{2} \mid ||x|| < 1 \right\}.$$

- (a) Prove that if $f, g: B^2 \longrightarrow [0, 1]$ are uniformly continuous, then so is $fg: B^2 \longrightarrow [0, 1]$.
- (b) Is the previous statement true for functions $f, g: B^2 \longrightarrow \mathbf{R}$?
- 6 Let $f: S^1 \longrightarrow X$ be a continuous function for which the induced homomorphism f_* of fundamental groups is trivial. Prove that f is nullhomotopic.
- 7 Compute the fundamental group of $X \{x\}$ for each point x of the space $X = \mathbf{R} \times [0, 1]$.
- 8 Let $\alpha: S^2 \longrightarrow P^2$ be the continuous map that identifies x and -x to a point.
 - (a) Is α a homotopy equivalence? Justify your answer.
 - (b) Is there another connected space X not equal to S^2 or P^2 such that $S^2 \longrightarrow X \longrightarrow P^2$, where both of the arrows indicate covering maps? Justify your answer.

(c) Is there another connected space Y not equal to S^2 or P^2 such that $Y \longrightarrow S^2 \longrightarrow P^2$, where both of the arrows indicate covering maps? Justify your answer.