DEPARTMENT OF MATHEMATICS

Topology Preliminary Examination June 9, 2014

- 1 Consider the set $X = \mathbf{R}^{\infty}$ of sequences of real numbers, equipped with the box topology. Find a sequence (\mathbf{x}_n) of points in X that converges pointwise to the constant sequence $\mathbf{0} = (0, 0, \dots)$ but which does not converge in the box topology.
- 2 Let $SL(2, \mathbf{R}) \subset \mathbf{R}^4$ denote the space of 2×2 matrices of determinant 1, with the subspace topology. For any invertible 2×2 matrix A, consider the map

$$\operatorname{conj}_A : \operatorname{SL}(2, \mathbf{R}) \longrightarrow \operatorname{SL}(2, \mathbf{R})$$

defined by

$$\operatorname{conj}_A(X) = AXA^{-1}.$$

- (a) Is $conj_A$ continuous for all choices of A? Why or why not?
- (b) Is $conj_A$ a homeomorphism? Why or why not?
- 3 Recall that a family $\{X_{\alpha}\}_{\alpha\in J}$ of subspaces of a space X is locally finite if every point of X has a neighborhood meeting X_{α} for only finitely many indices $\alpha\in J$. Let $\{K_{\alpha}\}_{\alpha\in J}$ be a locally finite family of compact subspaces of a space X. Prove that $\bigcup_{\alpha\in J}K_{\alpha}$ is locally compact in the subspace topology.
- 4 Prove that all metric spaces are normal.
- 5 Consider $S^1 \subset \mathbf{C}$ with basepoint $1 \in S^1$. On the set of continuous based maps $S^1 \longrightarrow S^1$, consider the following operations:
 - (a) Path-composition, given by

$$\alpha\beta(z) = \begin{cases} \alpha(z^2) & \text{if } \text{Im}(z) \ge 0\\ \beta(z^2) & \text{if } \text{Im}(z) \le 0 \end{cases}$$

- (b) Point-wise multiplication, given by $\alpha \cdot \beta(z) = \alpha(z)\beta(z)$.
- (c) Function composition, given by $\alpha \circ \beta(z) = \alpha(\beta(z))$.

Determine the operations induced on $\pi_1(S^1,1) \cong \mathbf{Z}$ by the above three operations.

- 6 Let X and Y be two homotopy equivalent path connected spaces, and $x_0 \in X, y_0 \in Y$. Prove that $\pi_1(X, x_0) \cong \pi_1(Y, y_0)$.
- 7 Let X be the complement of three distinct points in \mathbb{R}^4 .
 - (a) Describe a 2-dimensional CW complex $Y \subset X$ that is a deformation retract of X and explain why it is a deformation retract.
 - (b) Determine the fundamental group of X.
- 8 Show that the only compact, connected surface M that can cover the torus T^2 is T^2 itself.