Topology Preliminary Exam Summer 2024

On grading: A necessary condition to pass this exam is to completely solve one point-set question and one of the more algebraic questions. An excellent exam will completely solve five problems and have some partial credit on the remaining questions.

- (1) Let $f: X \to X$ be a continuous function and suppose that X is Hausdorff (T_2) .
 - (a) Prove the graph of f is closed in $X \times X$.
 - (b) Show the fixed points of f are a closed subset of X.
- (2) Suppose $i: Z \to Y$ is an inclusion. Show the induced map

$$i_* \colon \operatorname{Map}(X, Z) \to \operatorname{Map}(X, Y)$$

is an injection and a homeomorphism onto its image.

(As a set Map(X, Z) is the continuous functions from X to Z. It is given the compact open topology.)

- (3) Let \mathbb{R} act on \mathbb{R}^2 by $t \cdot (x, y) = (x, y + tx)$.
 - (a) Prove that the quotient by this action, with the quotient topology, is not Hausdorff, but is the union of two Hausdorff subspaces.
 - (b) Show that the quotient is a T_1 -space. That is, for every pair of distinct points, each is contained in a neighborhood not containing the other point.
- (4) Show that there is no retraction $r: S^1 \times D^2 \to S^1 \times S^1$.
- (5) Let $\alpha: S^1 \to S^1 \times S^1$ be given by $\alpha(z) = (z, (1, 0))$. Let X be the space given by attaching two disks to $S^1 \times S^1$. The first disk is attached along the image of α by the degree 3 map and the second is attached along the image of α by the degree 2 map. Compute the fundamental group of X.
- (6) Find all 3-fold connected coverings of $\mathbb{R}P^2 \vee S^1$ up to isomorphism.
- (7) Use Mayer-Vietoris to compute (for any X) the homology $H_*(X \times S^1)$ in terms of $H_*(X)$. Use this to compute the homology of the *n*-torus $T^n = S^1 \times \cdots \times S^1$.
- (8) Let $X = S^1 \times S^1$ and $Y = S^1 \vee S^1 \vee S^2$ with universal covers \tilde{X} and \tilde{Y} , respectively.
 - (a) Show that X and Y have isomorphic homology groups.
 - (b) Show that the homology of \tilde{X} differs from the homology \tilde{Y} .