Tuesday, November 1 ** Invertible matrices & the LU decomposition

- 1. (Permutation matrices) Any matrix that can be obtained from the identity matrix by switching rows is called a **permutation matrix**. A **simple** permutation matrix is one obtained from the identity matrix by performing a single row switch.
 - (a) Explain why any permutation matrix is a product of simple permutations.
 - (b) Show that for any simple permutation matrix *E*, the inverse E^{-1} is simply *E*.
 - (c) The equation $E^{-1} = E$ does not hold for all permutation matrices. For example, write the matrix

$$P = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$

as a product of simple permutations and use this to find P^{-1} . Show that P^{-1} is in fact P^2 .

 (Permuted *LU* decomposition) Not every matrix can be row-reduced into echelon form without switching any rows. A matrix *A* may need to be first multiplied by a permutation *P* in order to get an LU decomposition. For example, consider

$$A = \begin{pmatrix} 0 & 3 & -1 \\ 2 & -2 & -1 \\ 1 & 2 & 0 \end{pmatrix}.$$

(a) Let $P_{1,2}$ be the simple permutation corresponding to switching the first two rows. Find the *LU* decomposition for $P_{1,2}A$. Then

$$A = P_{1,2}^{-1} L U$$

is a permuted *LU* decomposition of *A*.

(b) Use the permuted *LU* decomposition from (a) to solve $A\mathbf{x} = \begin{pmatrix} 1 \\ 4 \\ 5 \end{pmatrix}$. Hint: just solve

$$LU = P_{1,2} \begin{pmatrix} 1\\4\\5 \end{pmatrix}.$$

(c) Let $P_{1,3}$ be the simple permutation corresponding to switching the first two rows. Find the *LU* decomposition for $P_{1,3}A$. Then

$$A = P_{1,3}^{-1} L U$$

is a permuted *LU* decomposition of *A*.

(d) Use the permuted *LU* decomposition from (c) to solve $A\mathbf{x} = \begin{pmatrix} 1\\4\\5 \end{pmatrix}$.