Tuesday, December 6  *x  Orthogonal bases & Orthogonal projections — **  Solutions

1. Abasis #is called an orthonormal basis if it is orthogonal and each basis vector has norm
equal to 1.

(a) Convert the orthogonal basis

G

into an orthonormal basis ¥

Solution. We just scale each basis vector by its length. The new, orthonormal, basis
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(b) Find the coordinates of the vectors v; = (3) and v, = | 2 ) in the basis 7.
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Solution. The formula is the same as for a general orthogonal basis: writing uy, uy,
and uj for the basis vectors, the formula for each coordinate of v; in the basis % is

We compute to find
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so (v1)¢ = | —Vv/6 | . Similarly, we get
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Orthonormal bases are very convenient for calculations.



2. (The Gram-Schmidt process) There is a standard process for converting a basis into an
orthogonal basis. Let = {v, v, v3} be a basis for R>. In this problem, you will find an
orthogonal basis ¢ = {wy, wp, w3 }.

Start by setting wi; = v;. Then we want w; to be orthogonal to v;. If we write p for the
projection of v, onto wy, then v, — p is orthogonal to wy, so we may choose this for wy.
In other words,

Wy = Vy — projwl(vz).
Next, we want w3 to be orthogonal to both w; and wy, so we define

W = V3 — proj,, (V3) — projy, (v3).

(a) Use the Gram-Schmidt process to convert

)

into an orthogonal basis €.
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Solution. We set w; = (1) . Then
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We then take
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(b) Convert this orthogonal basis into an orthonormal basis, and then find the coordi-
7
nates of the vector v = | 2 | in this orthonormal basis.
1

Solution. The orthonormal basis is
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Note that another way to write this same basis is as
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A computation as in problem 1 gives (v)y = | —1/3/2
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3. Find the least squares solution to the system of equations
2x+y =3
—Xx—y=2
3x +y =23
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Solution. We have A = (1 1) and b = (2) . The least squares solution is the
3 1 3
solution to the normal equation
ATAx = ATb.
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The least squares solution is therefore given by
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so the least squares solution x is not an actual solution.

The matrix AT A is

with inverse

Note that



