Math 351 - Elementary Topology

Friday, November 9 ** Exam 2 Review Problems

- 1. Give an example of subspaces $A \subseteq \mathbb{R}^n$ and $B \subseteq \mathbb{R}^n$, for some *n*, together with a continuous bijection $f : A \longrightarrow B$ which is *not* a homeomorphism.
- 2. Show that if $f : X \longrightarrow Y$ is a homeomorphism and $A \subseteq X$, then Int (f(A)) = f(Int A).
- 3. Let $f : X \longrightarrow Y$ be an embedding.
 - (a) Prove or disprove: If *Y* is Hausdorff, so is *X*.
 - (b) Prove or disprove: If *X* is Hausdorff, so is *Y*.
- 4. Show that if $A \subseteq X$ is closed and $B \subseteq Y$ is also closed, then $A \times B \subseteq X \times Y$ is closed. Use **only** the definition of the product topology. In other words, you may *not* use that $\overline{A \times B} = \overline{A} \times \overline{B}$.
- 5. Let (x_n) and (y_n) be sequences in the spaces *X* and *Y*, respectively. Show that $x_n \to x$ and $y_n \to y$ if and only if $(x_n, y_n) \to (x, y)$ in $X \times Y$.
- 6. Let $X = \mathbb{R}_{\ell} \times \mathbb{R}$ and let $L \subseteq X$ be a line. Describe the topology on *L* inherited from *X*. Hint: the answer depends on the slope of *L*.
- 7. Let $X \times Y$ be partitioned into the subsets $X \times \{y\}$, one partition for each $y \in Y$. Show that the resulting quotient $(X \times Y)^*$ is homeomorphic to Y.
- 8. Give an example of a quotient map $q : X \rightarrow Y$ such that q is *not* an open map.
- 9. Let $Z \subseteq \mathbb{R}^2$ be the union of the two coordinate axes. Define $q : \mathbb{R}^2 \twoheadrightarrow Z$ by

$$q(x,y) = \begin{cases} (x,0) & x \neq 0 \\ (0,y) & x = 0. \end{cases}$$

- (a) Show that *q* is *not* continuous if *Z* is given the subspace topology.
- (b) Describe the resulting quotient topology on *Z*. What would be a basis for this topology? Is it Hausdorff?
- 10. Show that a hexagon with opposite edges glued together with a flip yields \mathbb{RP}^2 .