Group: _

Math 351 - Elementary Topology

Wednesday, December 5 ** One-point Compactification

A **compactification** of a space *X* is a compact space *Z* together with an embedding $X \hookrightarrow Z$ such that *X* is dense in *Z*. Pictured to the right are two compactifications of an open interval.

Given any space *X*, define a new space $X_+ = X \cup \{\infty\}$ as follows:

- every open subset $U \subseteq X$ is considered open in X_+
- The neighborhoods *V* of the new point ∞ are the subsets such that *X* \ *V* is *compact*.

It can be shown that if *X* is Hausdorff then this defines a topology on X_+ , and it is clear that *X* is a subspace of X_+ .

- 1. Assume the above defines a topology on X_+ . Show that X_+ is compact.
- 2. What space is \mathbb{R}_+ ? What are \mathbb{R}^2_+ and \mathbb{R}^n_+ ?
- 3. What is $[(0,1) \cup (2,3)]_+$?
- 4. Assume *X* is **not** compact. Show that *X* is dense in X_+ . What is another description of X_+ if *X* is already compact?

Solutions.

- 1. Let \mathcal{U} be an open cover of X_+ . Then at least one of the open sets in \mathcal{U} contains the added point ∞ . Let $\infty \in V \in \mathcal{U}$. We may assume that V is not all of X_+ , since if $V = X_+$ then $\{V\} \subseteq \mathcal{U}$ is a finite subcover. Now $\mathcal{U} \setminus \{V\}$ must cover $X_+ \setminus V$. By the definition of the topology on X_+ , the set $X_+ \setminus V$ is compact, so $\mathcal{U} \setminus \{V\}$ has a finite subcover \mathcal{V} (as a cover of $X_+ \setminus V$). It follows that $\mathcal{V} \cup \{V\}$ is a finite subcover of X_+ , and X_+ is compact.
- 2. These spaces are S^1 , S^2 , and S^n , respectively. This can be seen by using the stereographic projection, which identifies $S^n \setminus \{P\}$ with \mathbb{R}^n for any $P \in S^n$. Note that every open neighborhood U of P must have compact complement since $S^n \setminus U$ is a closed subset of the compact space S^n .
- 3. This space can be identified with $S^1 \vee S^1$. The point ∞ corresponds to the common base-point of the two circles.

Name:

4. Suppose *X* is not compact. Then the point $\{\infty\}$ is not open, which means that *X* is not closed in *X*₊. It follows that *X*₊ = *X* \cup $\{\infty\}$ is the smallest closed set containing *X*, so that *X* is dense in *X*₊.

If we assume, on the other hand, that X is compact, then $\{\infty\}$ is both closed and open in X_+ . In other words, $X_+ = X \amalg \{\infty\}$ is a disjoint union.