MA 114 Worksheet # 10:

Taylor polynomials and volumes of solids with known cross sections

Recommendation: Drawing a picture of the solids may be helpful during this worksheet.

- 1. What is $T_3(x)$ centered at a = 3 for a function f(x) where f(3) = 9, f'(3) = 8, f''(3) = 4, and f'''(3) = 12?
- 2. Calculate the Taylor polynomials $T_2(x)$ and $T_3(x)$ centered at x = a for the given function and value of a.
 - (a) $f(x) = \tan x, \ a = \frac{\pi}{4}$
 - (b) $f(x) = x^2 e^{-x}, a = 1$
 - (c) $f(x) = \frac{\ln x}{x}, a = 1$
- 3. Let $T_2(x)$ be the Taylor polynomial of $f(x) = \sqrt{x}$ at a = 4. Apply the error bound to find the maximum possible value of $|f(1.1) T_2(1.1)|$. Show that we can take $K = e^{1.1}$.
- 4. (a) Let $f(x) = 3x^3 + 2x^2 x 4$. Calculate $T_k(x)$ for k = 1, 2, 3, 4, 5 at both a = 0 and a = 1. Show that $T_3(x) = f(x)$ in both cases.
 - (b) Let $T_n(x)$ be the n^{th} Taylor polynomial at x = a for a polynomial f(x) of degree n. Based on part (a), guess the value of $|f(x) T_n(x)|$. Prove that your guess is correct using the error bound.
- 5. Conceptual Understanding: If a solid has a cross-sectional area given by the function A(x), what integral should be evaluated to find the volume of the solid?
- 6. Let V be the volume of a right circular cone of height 10 whose base is a circle of radius 4. Use similar triangles to find the area of a horizontal cross section at a height y. Using this area, calculate V by integrating the cross-sectional area.
- 7. Calculate the volume of the following solid. The base is a square, one of whose sides is the interval [0, l] along the x-axis. The cross sections perpendicular to the x-axis are rectangles of height $f(x) = x^2$.
- 8. Calculate the volume of the following solid. The base is the region enclosed by $y = x^2$ and y = 3. The cross sections perpendicular to the *y*-axis are squares.
- 9. The base of a certain solid is the triangle with vertices at (-10, 5), (5, 5), and the origin. Cross-sections perpendicular to the y-axis are squares. Find the volume of the solid.
- 10. As viewed from above, a swimming pool has the shape of the ellipse $\frac{x^2}{2500} + \frac{y^2}{1600} = 1$. The cross sections perpendicular to the ground and parallel to the *y*-axis are squares. Find the total volume of the pool.
- 11. Calculate the volume of the following solid. The base is a circle of radius r centered at the origin. The cross sections perpendicular to the x-axis are squares.
- 12. Calculate the volume of the following solid. The base is the parabolic region $\{(x, y) \mid x^2 \leq y \leq 4\}$. The cross sections perpendicular to the *y*-axis are right isosceles triangles whose hypotenuse lies in the region.