MA 114 Worksheet \# 10:
 Taylor polynomials and volumes of solids with known cross sections

Recommendation: Drawing a picture of the solids may be helpful during this worksheet.

1. What is $T_{3}(x)$ centered at $a=3$ for a function $f(x)$ where $f(3)=9, f^{\prime}(3)=8, f^{\prime \prime}(3)=4$, and $f^{\prime \prime \prime}(3)=12$?
2. Calculate the Taylor polynomials $T_{2}(x)$ and $T_{3}(x)$ centered at $x=a$ for the given function and value of a.
(a) $f(x)=\tan x, a=\frac{\pi}{4}$
(b) $f(x)=x^{2} e^{-x}, a=1$
(c) $f(x)=\frac{\ln x}{x}, a=1$
3. Let $T_{2}(x)$ be the Taylor polynomial of $f(x)=\sqrt{x}$ at $a=4$. Apply the error bound to find the maximum possible value of $\left|f(1.1)-T_{2}(1.1)\right|$. Show that we can take $K=e^{1.1}$.
4. (a) Let $f(x)=3 x^{3}+2 x^{2}-x-4$. Calculate $T_{k}(x)$ for $k=1,2,3,4,5$ at both $a=0$ and $a=1$. Show that $T_{3}(x)=f(x)$ in both cases.
(b) Let $T_{n}(x)$ be the $n^{\text {th }}$ Taylor polynomial at $x=a$ for a polynomial $f(x)$ of degree n. Based on part (a), guess the value of $\left|f(x)-T_{n}(x)\right|$. Prove that your guess is correct using the error bound.
5. Conceptual Understanding: If a solid has a cross-sectional area given by the function $A(x)$, what integral should be evaluated to find the volume of the solid?
6. Let V be the volume of a right circular cone of height 10 whose base is a circle of radius 4 . Use similar triangles to find the area of a horizontal cross section at a height y. Using this area, calculate V by integrating the cross-sectional area.
7. Calculate the volume of the following solid. The base is a square, one of whose sides is the interval $[0, l]$ along the x-axis. The cross sections perpendicular to the x-axis are rectangles of height $f(x)=x^{2}$.
8. Calculate the volume of the following solid. The base is the region enclosed by $y=x^{2}$ and $y=3$. The cross sections perpendicular to the y-axis are squares.
9. The base of a certain solid is the triangle with vertices at $(-10,5),(5,5)$, and the origin. Cross-sections perpendicular to the y-axis are squares. Find the volume of the solid.
10. As viewed from above, a swimming pool has the shape of the ellipse $\frac{x^{2}}{2500}+\frac{y^{2}}{1600}=1$. The cross sections perpendicular to the ground and parallel to the y-axis are squares. Find the total volume of the pool.
11. Calculate the volume of the following solid. The base is a circle of radius r centered at the origin. The cross sections perpendicular to the x-axis are squares.
12. Calculate the volume of the following solid. The base is the parabolic region $\left\{(x, y) \mid x^{2} \leq y \leq 4\right\}$. The cross sections perpendicular to the y-axis are right isosceles triangles whose hypotenuse lies in the region.
