Math 114 Worksheet # 14: Integration by Parts and Trigonometric Integrals

- 1. Use the product rule to find (u(x)v(x))'. Next use this result to prove integration by parts, namely that $\int u(x)v'(x)dx = u(x)v(x) \int v(x)u'(x)dx$.
- 2. Which of the following integrals should be solved using substitution and which should be solved using integration by parts?

(a)
$$\int x \cos(x^2) dx$$
,
(b) $\int e^x \sin(x) dx$,
(c) $\int \frac{\ln (\arctan(x))}{1 + x^2} dx$,
(d) $\int x e^{x^2} dx$

Using these examples, try and formulate a general rule for when integration by parts should be used as opposed to substitution.

3. Solve the following integrals using integration by parts:

(a)
$$\int x^2 \sin(x) dx$$
,
(b) $\int (2x+1)e^x dx$,
(c) $\int x \sin(3-x) dx$,
(d) $\int 2x \arctan(x) dx$,
(e) $\int \ln(x) dx$

4. Prove the reduction formula $\int x^n e^x dx = x^n e^x - n \int x^{n-1} e^x dx$. Use this to evaluate $\int x^3 e^x dx$.

- 5. Let f(x) be a twice differentiable function with f(0) = 6, f(1) = 5, and f'(1) = 2. Evaluate $\int_0^1 x f''(x) dx$.
- 6. Evaluate the following integrals.

(a)
$$\int \cos^2(x) dx.$$
 (d) $\int x^2 \cos(x) dx.$
(b) $\int_0^{\pi/2} \sin^2(x) \cos^2(x) dx.$ (e) $\int e^x \cos(x) dx.$
(c) $\int \sin^3(x) \cos^2(x) dx.$

7. Evaluate $\int \sin(x) \cos(x) dx$ by four methods

(a) the substitution $u = \cos(x)$,

- (c) the identity $\sin(2x) = 2\sin(x)\cos(x)$,
- (b) the substitution $u = \sin(x)$, (d) integration by parts.
- 8. Find the volume of the solid obtained by rotating $f(x) = e^x$ about the y-axis from $0 \le x \le 2$.