Math 114 Worksheet \# 14:
 Integration by Parts and Trigonometric Integrals

1. Use the product rule to find $(u(x) v(x))^{\prime}$. Next use this result to prove integration by parts, namely that $\int u(x) v^{\prime}(x) d x=u(x) v(x)-\int v(x) u^{\prime}(x) d x$.
2. Which of the following integrals should be solved using substitution and which should be solved using integration by parts?
(a) $\int x \cos \left(x^{2}\right) d x$,
(c) $\int \frac{\ln (\arctan (x))}{1+x^{2}} d x$,
(b) $\int e^{x} \sin (x) d x$,
(d) $\int x e^{x^{2}} d x$

Using these examples, try and formulate a general rule for when integration by parts should be used as opposed to substitution.
3. Solve the following integrals using integration by parts:
(a) $\int x^{2} \sin (x) d x$,
(d) $\int 2 x \arctan (x) d x$,
(b) $\int(2 x+1) e^{x} d x$,
(e) $\int \ln (x) d x$
(c) $\int x \sin (3-x) d x$,
4. Prove the reduction formula $\int x^{n} e^{x} d x=x^{n} e^{x}-n \int x^{n-1} e^{x} d x$. Use this to evaluate $\int x^{3} e^{x} d x$.
5. Let $f(x)$ be a twice differentiable function with $f(0)=6, f(1)=5$, and $f^{\prime}(1)=2$. Evaluate $\int_{0}^{1} x f^{\prime \prime}(x) d x$.
6. Evaluate the following integrals.
(a) $\int \cos ^{2}(x) d x$.
(d) $\int x^{2} \cos (x) d x$.
(b) $\int_{0}^{\pi / 2} \sin ^{2}(x) \cos ^{2}(x) d x$.
(e) $\int e^{x} \cos (x) d x$.
(c) $\int \sin ^{3}(x) \cos ^{2}(x) d x$.
7. Evaluate $\int \sin (x) \cos (x) d x$ by four methods
(a) the substitution $u=\cos (x)$,
(c) the identity $\sin (2 x)=2 \sin (x) \cos (x)$,
(b) the substitution $u=\sin (x)$,
(d) integration by parts.
8. Find the volume of the solid obtained by rotating $f(x)=e^{x}$ about the y-axis from $0 \leq x \leq 2$.

