MA 114 Worksheet # 18: Method of Partial Fractions and Numerical Integration

1. Write out the general form for the partial fraction decomposition but do not determine the numerical value of the coefficients.

(a)
$$\frac{1}{x^2 + 3x + 2}$$

(b) $\frac{x+1}{x^2 + 4x + 4}$
(c) $\frac{x}{(x^2 + 1)(x+1)(x+2)}$
(d) $\frac{2x+5}{(x^2 + 1)^3(2x+1)}$

2. Compute the following integrals.

(a)
$$\int \frac{x-9}{(x+5)(x-2)} dx$$

(b)
$$\int \frac{1}{x^2+3x+2} dx$$

(c)
$$\int \frac{x^3-2x^2+1}{x^3-2x^2} dx$$

(d)
$$\int \frac{x^3+4}{x^2+4} dx$$

(e)
$$\int \frac{1}{x(x^2+1)} dx$$

3. Compute

$$\int \frac{1}{\sqrt{x} - \sqrt[3]{x}} \, dx$$

by first making the substitution $u = \sqrt[6]{x}$.

- 4. Conceptual Understanding:
 - (a) Write down the Midpoint rule and illustrate how it works with a sketch.
 - (b) Write down the Trapezoidal Rule and the error bound associated with it.
- 5. Use the Midpoint rule to approximate the value of $\int_{-1}^{1} e^{-x^2} dx$ with n = 4. Draw a sketch to determine if the approximation is an overestimate or an underestimate of the integral.
- 6. The velocity in meters per second for a particle traveling along the axis is given in the table below. Use the Midpoint rule to approximate the total distance the particle traveled from t = 0 to t = 6.

t	v(t)
0	0.75
1	1.34
2	1.5
3	1.9
4	2.5
5	3.2
6	3.0