MA 114 Worksheet \# 18: Method of Partial Fractions and Numerical Integration

1. Write out the general form for the partial fraction decomposition but do not determine the numerical value of the coefficients.
(a) $\frac{1}{x^{2}+3 x+2}$
(b) $\frac{x+1}{x^{2}+4 x+4}$
(c) $\frac{x}{\left(x^{2}+1\right)(x+1)(x+2)}$
(d) $\frac{2 x+5}{\left(x^{2}+1\right)^{3}(2 x+1)}$
2. Compute the following integrals.
(a) $\int \frac{x-9}{(x+5)(x-2)} d x$
(b) $\int \frac{1}{x^{2}+3 x+2} d x$
(c) $\int \frac{x^{3}-2 x^{2}+1}{x^{3}-2 x^{2}} d x$
(d) $\int \frac{x^{3}+4}{x^{2}+4} d x$
(e) $\int \frac{1}{x\left(x^{2}+1\right)} d x$
3. Compute

$$
\int \frac{1}{\sqrt{x}-\sqrt[3]{x}} d x
$$

by first making the substitution $u=\sqrt[6]{x}$.
4. Conceptual Understanding:
(a) Write down the Midpoint rule and illustrate how it works with a sketch.
(b) Write down the Trapezoidal Rule and the error bound associated with it.
5. Use the Midpoint rule to approximate the value of $\int_{-1}^{1} e^{-x^{2}} d x$ with $n=4$. Draw a sketch to determine if the approximation is an overestimate or an underestimate of the integral.
6. The velocity in meters per second for a particle traveling along the axis is given in the table below. Use the Midpoint rule to approximate the total distance the particle traveled from $t=0$ to $t=6$.

t	$v(t)$
0	0.75
1	1.34
2	1.5
3	1.9
4	2.5
5	3.2
6	3.0

