MA 114 Worksheet \# 19: Numerical Integration

1. Simpson's Rule turns out to exactly integrate polynomials of degree three or less. Show that Simpson's rule gives the exact value of $\int_{0}^{h} p(x) d x$ where $h>0$ and $p(x)=a x^{3}+b x^{2}+c x+d$.
[Hint: First compute the exact value of the integral by direct integration. Then apply Simpson's rule with $\mathrm{n}=2$ and observe that the approximation and the exact value are the same.]
2. Use the Midpoint Rule and then Simpson's Rule to approximate the integral $\int_{0}^{\pi} x^{2} \sin x d x$ with $n=8$. Compare your results to the actual value to determine the error in each approximation.
3. Use the Trapezoid Rule, Midpoint Rule and Simpson's Rule to approximate the integral $\int_{0}^{2} \sqrt[4]{1+x^{2}} d x$ with $n=8$.
