MA 114 Worksheet \# 2: Sequences

1. Write the first four terms of the sequences with the following general terms:
(a) $\frac{n!}{2^{n}}$
(b) $\frac{n}{n+1}$
(c) $(-1)^{n+1}$
2. Find a formula for the nth term of the sequence $\left\{\frac{1}{1},-\frac{1}{8}, \frac{1}{27},-\frac{1}{64}, \ldots\right\}$.
3. Conceptual Understanding:
(a) What is a sequence?
(b) What does it mean to say that a sequence is bounded?
(c) What does it mean to say that a sequence is defined recursively?
(d) What does it mean to say that a sequence converges?
4. Let $a_{0}=0$ and $a_{1}=1$. Write out the first five terms of $\left\{a_{n}\right\}$ where a_{n} is recursively defined as $a_{n+1}=3 a_{n-1}+a_{n}{ }^{2}$.
5. Suppose that a sequence $\left\{a_{n}\right\}$ is bounded above and below. Does it converge? If not, produce a counterexample.
6. Show that the sequence with general term $a_{n}=\frac{3 n^{2}}{n^{2}+2}$ is increasing. Find and upper bound. Does $\left\{a_{n}\right\}$ converge?
7. Use the appropriate limit laws and theorems to determine the limit of the sequence or show that it diverges.
(a) $a_{n}=1.01^{n}$.
(b) $b_{n}=\frac{3 n^{2}+n+1}{2 n^{2}-3}$.
(c) $c_{n}=e^{1-n^{2}}$.
