MA 114 Worksheet # 2: Sequences

- 1. Write the first four terms of the sequences with the following general terms:
 - (a) $\frac{n!}{2^n}$ (b) $\frac{n}{n+1}$
 - (c) $(-1)^{n+1}$
- 2. Find a formula for the *n*th term of the sequence $\left\{\frac{1}{1}, -\frac{1}{8}, \frac{1}{27}, -\frac{1}{64}, \ldots\right\}$.
- 3. Conceptual Understanding:
 - (a) What is a sequence?
 - (b) What does it mean to say that a sequence is bounded?
 - (c) What does it mean to say that a sequence is defined recursively?
 - (d) What does it mean to say that a sequence converges?
- 4. Let $a_0 = 0$ and $a_1 = 1$. Write out the first five terms of $\{a_n\}$ where a_n is recursively defined as $a_{n+1} = 3a_{n-1} + a_n^2$.
- 5. Suppose that a sequence $\{a_n\}$ is bounded above and below. Does it converge? If not, produce a counterexample.
- 6. Show that the sequence with general term $a_n = \frac{3n^2}{n^2 + 2}$ is increasing. Find and upper bound. Does $\{a_n\}$ converge?
- 7. Use the appropriate limit laws and theorems to determine the limit of the sequence or show that it diverges.
 - (a) $a_n = 1.01^n$.
 - (b) $b_n = \frac{3n^2 + n + 1}{2n^2 3}$.
 - (c) $c_n = e^{1-n^2}$.