MA 114 Worksheet \# 24: Review for Exam 3

1. Power, Maclaurin, and Taylor Series
(a) Find the Maclaurin series for $\frac{x^{2}}{1+x}$.
(b) Find the Taylor series for $\cos x$ about $a=\pi / 2$.
2. Compute
(a) $\int \frac{d x}{x^{2}-6 x+8}$
(c) $\int \frac{x^{2}}{x^{2}+9} d x$
(b) $\int \frac{3}{(x+1)\left(x^{2}+x\right)} d x$
(d) $\int \frac{x^{2}+2}{x+3} d x$
3. Compute $\int \frac{e^{x}}{e^{2 x}-e^{x}} d x$.

Hint: First do a substitution, and then use partial fractions.
4. Evaluate $\int \frac{d x}{x^{2}-1}$ first with a trig substitution and then with partial fractions. Verify that the answer is the same in both cases.
5. Recall the Trapezoid, Midpoint and Simpson's Rule.
(a) Compute M_{4} and T_{4} for $\int_{0}^{2} x^{2} d x$
(b) Compute T_{4} and S_{4} for $\int_{1}^{4} \frac{1}{x} d x$.
6. An airplane's velocity is recorded at 5 minute intervals during a 1 hour flight with the following results, in miles per hour: Estimate the total distance traveled by the plane during the hour using Simpson's Rule.

$$
\{550,575,600,580,610,640,625,595,590,620,640,640,630\}
$$

7. Find the arc length of $f(x)=\ln (\sec (x))$ from $x=0$ to $x=\pi / 4$.
8. Find the surface area of the solid of revolution obtained by revolving $\sqrt{9-x^{2}}$ about the x-axis for $-2 \leq x \leq 2$.
9. Consider point masses m_{1}, m_{2}, and m_{3} centered at $(-1,0),(3,0)$, and $(0,4)$ respectively. If $m_{1}=6$, find m_{2} so that the center of mass lies on the y-axis.
10. Use separation of variables to solve $y^{\prime}+4 x y^{2}=0$.
11. Use separation of variables to solve $y^{\prime}=(x+1)\left(y^{2}+1\right)$.
12. Find the solutions to $y^{\prime}=-2 y+8$ subject to $y(0)=3$ and $y(0)=4$, respectively, and sketch their graphs.
13. Match each of the slope fields below with exactly one of the differential equations. (The scales on the x - and y-axes are the same.) Also, provide enough explanation to show why no other matches are possible.
(i) $y^{\prime}=x y+1$
(ii) $y^{\prime}=x e^{-y}$
(iii) $y^{\prime}=y^{2}+1$
(iv) $y^{\prime}=\sin y$

Figure 1: Slope fields for Problem 13

