MA 114 Worksheet \# 3: Summing an Infinite Series

1. (Review) Compute the following sums
(a) $\sum_{n=1}^{5} 3 n$
(b) $\sum_{k=3}^{6}\left(\sin \left(\frac{\pi}{2}+\pi k\right)+2 k\right)$
2. Conceptual Understanding:
(a) What is a series?
(b) What is the difference between a sequence and a series?
(c) What does it mean that a series converges?
3. Write the following in summation notation:
(a) $\frac{1}{9}+\frac{1}{16}+\frac{1}{25}+\frac{1}{36}+\ldots$
(b) $1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\ldots$
4. Calculate S_{3}, S_{4}, and S_{5} and then find the sum of the telescoping series $S=\sum_{n=1}^{\infty}\left(\frac{1}{n+1}-\frac{1}{n+2}\right)$.
5. Use Theorem 3 of 10.2 (Divergence Test) to prove that the following two series diverge:
(a) $\sum_{n=1}^{\infty} \frac{n}{10 n+12}$
(b) $\sum_{n=1}^{\infty} \frac{n}{\sqrt{n^{2}+1}}$
6. Use the formula for the sum of a geometric series to find the sum or state that the series diverges and why:
(a) $\frac{1}{1}+\frac{1}{8}+\frac{1}{8^{2}}+\ldots$.
(b) $\sum_{n=0}^{\infty}\left(\frac{\pi}{e}\right)^{n}$.
(c) $5-\frac{5}{4}+\frac{5}{4^{2}}-\frac{5}{4^{3}}+\ldots$.
(d) $\sum_{n=0}^{\infty} \frac{8+2^{n}}{5^{n}}$.
