MA 114 Worksheet # 30: Final Exam Review

Caution: This review sheet does not cover all the possible problems you may see on the final exam. Be sure to review all topics listed on the course calendar.

1. Integration: Compute each of the following (unless the integral is divergent).

(a)
$$\int \frac{\sin(\ln(t))}{t} dt$$

(b)
$$\int e^x \sin x \, dx$$

(c)
$$\int_0^1 \frac{x-1}{\sqrt{x}} \, dx$$

(d)
$$\int_0^1 \frac{x-1}{x^2+3x+2} \, dx$$

(e)
$$\int \frac{1}{x^2\sqrt{25-x^2}} \, dx$$

(f)
$$\int_{-\infty}^0 x e^x \, dx$$

- 2. How many terms should you take in Simpson's rule to approximate $\int_{1}^{2} (\sin x + x + 1) dx$ correct to 5 decimal places?
- 3. Areas, Volumes, and Lengths: Set up (but do not evaluate) integrals for the following geometric quantities.
 - (a) The area enclosed by the curves $y = 1 2x^2$, y = |x|.
 - (b) The volume obtained by rotating the region bounded by the curves y = 1/x, x = 1, and x = 5 about the x-axis.
 - (c) The volume obtained by rotating the region bounded by the curves y = 1/x, x = 1, and x = 5 about the *y*-axis.
 - (d) The volume obtained by rotating the region bounded by the curves $y = \tan x$, y = x, and $x = \pi/3$ about the y-axis.
 - (e) The length of the curve $y = x^2$ from x = a to x = b.
 - (f) The length of the parametric curve $x = 3t^2$, $y = 2t^3$, $0 \le t \le 2$.
 - (g) The area enclosed by the polar curve $r = 1 \cos \theta$.
- 4. Parametric equations:
 - (a) Consider the curve $x(t) = 3t^2 + t$ and y(t) = 2t
 - i. Eliminate the parameter, t, to find a Cartesian equation for the curve.
 - ii. Find the tangent line to this curve at the point (x, y) = (14, 4).
 - (b) Consider the polar curves $r = \sin(2\theta)$ and $r = \cos\theta$.
 - i. Determine the Cartesian coordinates (x, y) of the point of intersection which is strictly in the first quadrant, i.e. x, y > 0.
 - ii. Set up an integral, or integrals, for computing the area of the region in the first quadrant between the bolded portion of the two curves. Do not evaluate the integral(s).

- 5. Differential Equations
 - (a) Solve $\frac{dL}{dt} = kL^2 \ln t, \ L(1) = -1.$
 - (b) Draw the direction field for the differential equation y' = y + x. Sketch the solution which satisfies y(0) = 0.
 - (c) Find the solution of $y' y = e^{2x}$, y(0) = 1.
 - (d) Consider the differential equation $y' = x^2 y$. If at the *n*-th iteration of Euler's method with h = 0.1 we have $(x_n, y_n) = (3.1, -2)$, what is (x_{n+1}, y_{n+1}) ?
- 6. Sequences and Series
 - (a) Does the sequence $\left\{\frac{2+n^3}{4+5n^3}\right\}$ converge? If so, what is its limit?
 - (b) True or false: If $\lim_{n \to 1} a_n = 0$ then $\sum_{n=0}^{\infty} a_n$ converges?

(c) Does the series
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n^{1/3}}$$
 converge conditionally, converge absolutely, or diverge? Explain.

(d)
$$\sum_{n=0}^{\infty} \left(\frac{1}{n+1} - \frac{1}{n+2} \right)$$
.

(e) Test the following series for convergence.

i.
$$\sum_{n=2}^{\infty} \frac{1}{n\sqrt{\ln n}}$$

ii.
$$\sum_{n=1}^{\infty} \frac{n^7}{7^n}$$

iii.
$$\sum_{n=0}^{\infty} \frac{\cos(n)}{2+2^n}$$

iv.
$$\sum_{n=1}^{\infty} \frac{5^n + n^2 + n + 17}{3n^4 + 4^n + 1 + 5}$$

- 7. Power, Maclaurin, and Taylor Series
 - (a) Find the Maclaurin series for $\frac{x^2}{1+x}$.
 - (b) Find the Taylor series for $\cos x$ about $a = \pi/2$.

8. Use the limit comparison test to determine if $\sum_{n=1}^{\infty} \left(1 - \cos \frac{1}{n}\right)$ converges or diverges.(Hint: compare with $\sum \frac{1}{n^2}$.