MA 114 Worksheet # 7: Power Series

Find the radius and interval of convergence for ∑[∞]_{n=0} (-1)ⁿn/4ⁿ (x - 3)ⁿ.
Find the radius and interval of convergence for 4 ∑[∞]_{n=0} 2ⁿ/n (4x - 8)ⁿ.
Find the radius and interval of convergence for ∑[∞]_{n=0} x²ⁿ/(-3)ⁿ.
Find the radius and interval of convergence for ∑[∞]_{n=0} n!(x - 2)ⁿ.
Give the definition of the radius of convergence of a power series ∑[∞] a_nxⁿ

- 6. Use term by term integration and the fact that $\int \frac{1}{1+x^2} dx = \arctan(x)$ to derive a power series centered at x = 0 for the arctangent function. [HINT: $\frac{1}{1+x^2} = \frac{1}{1-(-x^2)}$.]
- 7. Use the same idea as above to give a series expression for $\ln(1+x)$, given that $\int \frac{dx}{1+x} = \ln(1+x)$. You will again want to manipulate the fraction $\frac{1}{1+x} = \frac{1}{1-(-x)}$ as above.
- 8. Write $(1 + x^2)^{-2}$ as a power series. [HINT: Use term by term differentiation.]