MA 114 Worksheet \# 7: Power Series

1. Find the radius and interval of convergence for $\sum_{n=0}^{\infty} \frac{(-1)^{n} n}{4^{n}}(x-3)^{n}$.
2. Find the radius and interval of convergence for $4 \sum_{n=0}^{\infty} \frac{2^{n}}{n}(4 x-8)^{n}$.
3. Find the radius and interval of convergence for $\sum_{n=0}^{\infty} \frac{x^{2 n}}{(-3)^{n}}$.
4. Find the radius and interval of convergence for $\sum_{n=0}^{\infty} n!(x-2)^{n}$.
5. Give the definition of the radius of convergence of a power series $\sum_{n=0}^{\infty} a_{n} x^{n}$
6. Use term by term integration and the fact that $\int \frac{1}{1+x^{2}} d x=\arctan (x)$ to derive a power series centered at $x=0$ for the arctangent function. [Hint: $\frac{1}{1+x^{2}}=\frac{1}{1-\left(-x^{2}\right)}$.]
7. Use the same idea as above to give a series expression for $\ln (1+x)$, given that $\int \frac{d x}{1+x}=\ln (1+x)$. You will again want to manipulate the fraction $\frac{1}{1+x}=\frac{1}{1-(-x)}$ as above.
8. Write $\left(1+x^{2}\right)^{-2}$ as a power series. [Hint: Use term by term differentiation.]
