MA 114 Worksheet \# 9: Taylor Series

1. Find the terms through degree 3 of the Maclaurin series of $f(x)$.
(a) $f(x)=(1+x)^{1 / 4}$.
(b) $f(x)=e^{\sin (x)}$.
2. Find the Taylor series centered at c and find the interval on which the expansion converges to f.
(a) $f(x)=\frac{1}{x}$ at $c=1$.
(b) $f(x)=e^{3 x}$ at $c=-1$.
(c) $f(x)=x^{3}+3 x-1$ at $c=0$.
(d) $f(x)=x^{3}+3 x-1$ at $c=2$.
3. Find a power series representation for
(a) $f(x)=x \cos \left(x^{2}\right)$.
(b) $g(x)=(1+x) e^{-x}$.
4. Show that $\lim _{x \rightarrow 0} \frac{e^{x}-\cos (x)}{\sin (x)}=1$ using power series. Verify your answer with l'Hospital's Rule. [Hint: Write out the power series for each term and factor out the lowest power of x from the numerator and the denominator, and then consider the limit.]
