Name: ______ MA 114 — Calculus II Section: _____

Spring 2015

Quiz # 1 —
$$01/22/15$$

Answer all questions in a clear and concise manner. Answers that are without explanations or are poorly presented may not receive full credit.

1. Use calculus to compute the integral $\int (3x+5)\sin(x)dx$.

Set u = 3x + 5 and $v' = \sin(x)$. Then u' = 3 and $v = -\cos(x)$. Using integration by parts,

$$\int (3x+5)\sin(x)dx = -(3x+5)\cos(x) - \int -3\cos(x)dx$$
$$= -(3x+5)\cos(x) + 3\int \cos(x)dx$$
$$= -(3x+5)\cos(x) + 3\sin(x) + C$$

Award 1 point for correct values of u, v', u', and v. Also 1 point for correct answer. If student omits +C, add it without penalty.

2. Use calculus to compute the integral $\int \ln(x) \frac{1}{x^2} dx$.

Set $u = \ln(x)$ and $v' = \frac{1}{x^2}$ so that $u' = \frac{1}{x}$ and $v = -\frac{1}{x}$. Using integration by parts,

$$\int \ln(x) \frac{1}{x^2} dx = -\frac{\ln(x)}{x} - \int \frac{1}{x} \cdot \frac{-1}{x} dx$$
$$= -\frac{\ln(x)}{x} + \int \frac{1}{x^2} dx$$
$$= -\frac{\ln(x)}{x} - \frac{1}{x} + C$$
$$= -\frac{1}{x} (\ln(x) + 1) + C$$

Award 1 point for correct values of u, v', u', and v. Also 1 point for correct answer. Again, if student omits +C, mark it without penalty.