Name:
Section:
MA 114 - Calculus II

Quiz \# $1-01 / 22 / 15$

Answer all questions in a clear and concise manner. Answers that are without explanations or are poorly presented may not receive full credit.

1. Use calculus to compute the integral $\int(3 x+5) \sin (x) d x$.

Set $u=3 x+5$ and $v^{\prime}=\sin (x)$. Then $u^{\prime}=3$ and $v=-\cos (x)$. Using integration by parts,

$$
\begin{aligned}
\int(3 x+5) \sin (x) d x & =-(3 x+5) \cos (x)-\int-3 \cos (x) d x \\
& =-(3 x+5) \cos (x)+3 \int \cos (x) d x \\
& =-(3 x+5) \cos (x)+3 \sin (x)+C
\end{aligned}
$$

Award 1 point for correct values of $u, v^{\prime}, u^{\prime}$, and v. Also 1 point for correct answer. If student omits +C , add it without penalty.
2. Use calculus to compute the integral $\int \ln (x) \frac{1}{x^{2}} d x$.

Set $u=\ln (x)$ and $v^{\prime}=\frac{1}{x^{2}}$ so that $u^{\prime}=\frac{1}{x}$ and $v=-\frac{1}{x}$. Using integration by parts,

$$
\begin{aligned}
\int \ln (x) \frac{1}{x^{2}} d x & =-\frac{\ln (x)}{x}-\int \frac{1}{x} \cdot \frac{-1}{x} d x \\
& =-\frac{\ln (x)}{x}+\int \frac{1}{x^{2}} d x \\
& =-\frac{\ln (x)}{x}-\frac{1}{x}+C \\
& =-\frac{1}{x}(\ln (x)+1)+C
\end{aligned}
$$

Award 1 point for correct values of $u, v^{\prime}, u^{\prime}$, and v. Also 1 point for correct answer. Again, if student omits +C , mark it without penalty.

