Name: \qquad Section:
MA 114 - Calculus II

Quiz \# $2-01 / 29 / 15$

Answer all questions in a clear and concise manner. Answers that are without explanations or are poorly presented may not receive full credit.

We will show that $\sum_{n=1}^{\infty} \ln \left(\frac{(n+1)^{2}}{n(n+2)}\right)$ converges by recognizing it as a telescoping series.
Parts \mathbf{a} and \mathbf{b} together are worth 1 point. Parts \mathbf{c}, \mathbf{d} and \mathbf{e} are worth 1 point each.
a Show that $\ln \left(\frac{(n+1)^{2}}{n(n+2)}\right)=\ln \left(\frac{n+1}{n}\right)+\ln \left(\frac{n+1}{n+2}\right)$.

$$
\ln \left(\frac{(n+1)^{2}}{n(n+2)}\right)=\ln \left(\frac{n+1}{n} \cdot \frac{n+1}{n+2}\right)=\ln \left(\frac{n+1}{n}\right)+\ln \left(\frac{n+1}{n+2}\right)
$$

b Show that $\ln \left(\frac{n+1}{n}\right)+\ln \left(\frac{n+1}{n+2}\right)=\ln \left(\frac{n+1}{n}\right)-\ln \left(\frac{n+2}{n+1}\right)$.

$$
\ln \left(\frac{n+1}{n}\right)+\ln \left(\frac{n+1}{n+2}\right)=\ln \left(\frac{n+1}{n}\right)+\ln \left[\left(\frac{n+2}{n+1}\right)^{-1}\right]=\ln \left(\frac{n+1}{n}\right)-\ln \left(\frac{n+2}{n+1}\right)
$$

c Compute and simplify S_{2}, S_{3} and S_{4} where S_{N} denotes the N th partial sum of the series.

$$
\begin{gathered}
S_{2}=\ln (2)-\ln \left(\frac{3}{2}\right)+\ln \left(\frac{3}{2}\right)-\ln \left(\frac{4}{3}\right)=\ln (2)-\ln \left(\frac{4}{3}\right) \\
S_{3}=S_{2}+\ln \left(\frac{4}{3}\right)-\ln \left(\frac{5}{4}\right)=\ln (2)-\ln \left(\frac{5}{4}\right) \\
S_{4}=S_{3}+\ln \left(\frac{5}{4}\right)-\ln \left(\frac{6}{5}\right)=\ln (2)-\ln \left(\frac{6}{5}\right)
\end{gathered}
$$

d Give a short and simple version of S_{N}.

$$
S_{N}=\ln (2)-\ln \left(\frac{N+2}{N+1}\right)
$$

e Evaluate $\sum_{n=1}^{\infty} \ln \left(\frac{(n+1)^{2}}{n(n+2)}\right)$.

$$
\sum_{n=1}^{\infty} \ln \left(\frac{(n+1)^{2}}{n(n+2)}\right)=\lim _{N \rightarrow \infty} S_{N}=\lim _{N \rightarrow \infty} \ln (2)-\ln \left(\frac{N+2}{N+1}\right)=\ln (2)+\ln \left(\lim _{N \rightarrow \infty} \frac{N+2}{N+1}\right)=\ln (2)
$$

Leave a comment if continuity of \ln is not mentioned when taking the limit but do not deduct points.

