Section: _____

Spring 2015

Name: ______ MA 114 — Calculus II

Quiz # 2 —
$$01/29/15$$

Answer all questions in a clear and concise manner. Answers that are without explanations or are poorly presented may not receive full credit.

We will show that $\sum_{n=1}^{\infty} \ln\left(\frac{(n+1)^2}{n(n+2)}\right)$ converges by recognizing it as a telescoping series. Parts **a** and **b** together are worth 1 point. Parts **c**, **d** and **e** are worth 1 point each.

a Show that
$$\ln\left(\frac{(n+1)^2}{n(n+2)}\right) = \ln\left(\frac{n+1}{n}\right) + \ln\left(\frac{n+1}{n+2}\right).$$

$$\ln\left(\frac{(n+1)^2}{n(n+2)}\right) = \ln\left(\frac{n+1}{n} \cdot \frac{n+1}{n+2}\right) = \ln\left(\frac{n+1}{n}\right) + \ln\left(\frac{n+1}{n+2}\right)$$

b Show that
$$\ln\left(\frac{n+1}{n}\right) + \ln\left(\frac{n+1}{n+2}\right) = \ln\left(\frac{n+1}{n}\right) - \ln\left(\frac{n+2}{n+1}\right).$$

$$\ln\left(\frac{n+1}{n}\right) + \ln\left(\frac{n+1}{n+2}\right) = \ln\left(\frac{n+1}{n}\right) + \ln\left[\left(\frac{n+2}{n+1}\right)^{-1}\right] = \ln\left(\frac{n+1}{n}\right) - \ln\left(\frac{n+2}{n+1}\right).$$

c Compute and simplify S_2 , S_3 and S_4 where S_N denotes the Nth partial sum of the series.

$$S_{2} = \ln(2) - \ln\left(\frac{3}{2}\right) + \ln\left(\frac{3}{2}\right) - \ln\left(\frac{4}{3}\right) = \ln(2) - \ln\left(\frac{4}{3}\right)$$
$$S_{3} = S_{2} + \ln\left(\frac{4}{3}\right) - \ln\left(\frac{5}{4}\right) = \ln(2) - \ln\left(\frac{5}{4}\right)$$
$$S_{4} = S_{3} + \ln\left(\frac{5}{4}\right) - \ln\left(\frac{6}{5}\right) = \ln(2) - \ln\left(\frac{6}{5}\right)$$

d Give a short and simple version of S_N .

$$S_N = \ln(2) - \ln\left(\frac{N+2}{N+1}\right)$$

e Evaluate $\sum_{n=1}^{\infty} \ln\left(\frac{(n+1)^2}{n(n+2)}\right)$. $\sum_{n=1}^{\infty} \ln\left(\frac{(n+1)^2}{n(n+2)}\right) = \lim_{N \to \infty} S_N = \lim_{N \to \infty} \ln(2) - \ln\left(\frac{N+2}{N+1}\right) = \ln(2) + \ln\left(\lim_{N \to \infty} \frac{N+2}{N+1}\right) = \ln(2)$

Leave a comment if continuity of ln is not mentioned when taking the limit but do not deduct points.