Name: \qquad Section:
MA 114 - Calculus II

Quiz \# 3-02/05/15

Answer all questions in a clear and concise manner. Answers that are without explanations or are poorly presented may not receive full credit.

1. Determine whether the infinite series $\sum_{n=1}^{\infty} \frac{\cos (3 n)}{3^{n}}$ converges or diverges.

Observe that $0 \leq|\cos (3 n)| \leq 1$, so $0 \leq \frac{|\cos (3 n)|}{3^{n}} \leq \frac{1}{3^{n}}$.
Now the series $\sum_{n=1}^{\infty} \frac{1}{3^{n}}$ converges because it is a geometric series with $|r|=\frac{1}{3}<1$.
By Comparison test we see that $\sum_{n=1}^{\infty} \frac{\cos (3 n)}{3^{n}}$ converges absolutely. Therefore, the series converges.

Award 1 point for comparing it with the correct geometric series and 1 point for drawing the correct conclusion
2. Use the Leibniz alternating series test to see if the following series converges. If it converges, determine whether it converges absolutely or conditionally.

$$
\sum_{n=1}^{\infty} \frac{3(-1)^{n}}{n^{2}+1}
$$

C1: $\lim _{n \rightarrow \infty} \frac{3}{n^{2}+1}=0$. So the first condition holds.
C2: We need to show that $0<a_{n+1} \leq a_{n}$.
$a_{n}=\frac{3}{n^{2}+1}>0$ for all n, so we just need to show that $a_{n+1} \leq a_{n}$.
Note that $n^{2}+1<(n+1)^{2}+1$ for all n. So, $\frac{3}{(n+1)^{2}+1}<\frac{3}{n^{2}+1}$.
This shows that $0<a_{n+1}<a_{n}$ for all n and the second condition holds.
As such, the given series converges by the Leibniz alternating series test.
Next we test for absolute convergence.
Observe that $\left|\frac{3(-1)^{n}}{n^{2}+1}\right|=\frac{3}{n^{2}+1}<\frac{3}{n^{2}}$.
The series $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ converges because it is a p series with $p>1$.
Therefore, $\sum_{n=1}^{\infty} \frac{3}{n^{2}}$ also converges and by using the comparison test we see that $\sum_{n=1}^{\infty} \frac{3}{n^{2}+1}$ also converges.
This implies that the original series $\sum_{n=1}^{\infty} \frac{3(-1)^{n}}{n^{2}+1}$ converges absolutely.
Award 1 point for showing convergence and 1 point for showing absolute convergence

